Движение заряженных частиц в продольном электрическом поле. Как себя ведет электрически заряженная частица в электрическом и магнитном полях? Вычисление параметров частицы

Ознакомьтесь с теорией в конспекте и учебнике (Савельев, т. 2, § 5, § 73). Запустите программу. Выберите «Электричество и магнетизм» и «Движение заряда в электрическом поле». Нажмите вверху внутреннего окна кнопку с изображением страницы. Прочитайте краткие теоретические сведения. Необходимое запишите в свой конспект. (Если вы забыли, как работать с системой компьютерного моделирования, прочитайте ВВЕДЕНИЕ с. 5 еще раз.)

ЦЕЛЬ РАБОТЫ:

* Знакомство с моделью процесса движения заряда в однородном электрическом поле.

* Экспериментальное исследование закономерностей движения точечного заряда в однородном электрическом поле.

* Экспериментальное определение величины удельного заряда частицы.

КРАТКАЯ ТЕОРИЯ:

Движение заряженных частиц в электрическом поле широко используется в современных электронных приборах, в частности, в электронно-лучевых трубках с электростатической системой отклонения электронного пучка.

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД есть величина, характеризующая способность объекта создавать электрическое поле и взаимодействовать с электрическим полем.

ТОЧЕЧНЫЙ ЗАРЯД – это абстрактный объект (модель), имеющий вид материальной точки, несущей электрический заряд (заряженная МТ).

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ – это то, что существует в области пространства, в которой на заряженный объект действует сила, называемая электрической.

ОСНОВНЫМИ СВОЙСТВАМИ заряда являются:

· аддитивность (суммируемость);

· инвариантность (одинаковость во всех инерциальных системах отсчета);

· дискретность (наличие элементарного заряда, обозначаемого е , и кратность любого заряда этому элементарному: q = Ne , где N - любое целое положительное или отрицательное число);

· подчинение закону сохранения заряда (суммарный заряд электрически изолированной системы, через границы которой не могут проникать заряженные частицы, сохраняется);

· наличие положительных и отрицательных зарядов (заряд – величина алгебраическая).

ЗАКОН КУЛОНА определяет силу взаимодействия двух точечных зарядов: , где – единичный вектор, направленный от первого заряда q 1 ко второму q 2 .

НАПРЯЖЕННОСТЬЮ называется векторная характеристика поля , численно равная отношению силы , действующей на точечный заряд, к величине q этого заряда: . Если задана напряженность электрического поля, тогда сила, действующая на заряд, будет определяться формулой .

ОДНОРОДНЫМ называется поле, напряженность которого во всех точках одинакова как по величине, так и по направлению. Сила, действующая на заряженную частицу в однородном поле, везде одинакова, поэтому неизменным будет и ускорение частицы, определяемое вторым законом Ньютона (при малых скоростях движения V « c , где с – скорость света в вакууме): = const. Тогда Y = , и

V Y = , где Y – смещение частицы по вертикали и V Y – вертикальная компонента скорости в момент времени, когда частица вылетает из конденсатора.

МЕТОДИКА И ПОРЯДОК ИЗМЕРЕНИЙ

Закройте окно теории. Внимательно рассмотрите рисунок, найдите все регуляторы и другие основные элементы.

Зарисуйте поле эксперимента и траекторию движения частицы. Нажав кнопку «Старт», наблюдайте на экране движение частицы.

На заряженную частицу в электростатическом поле действует кулоновская сила, которую можно найти, зная напряженность поля в данной точке

Эта сила сообщает ускорение

где m - масса заряженной частицы. Как видно, направление ускорения будет совпадать с направлением , если заряд частицы положителен (q > 0), и будет противоположно , если заряд отрицателен (q Если электростатическое поле однородное ( = const), то ускорение = const и частица будет совершать равноускоренное движение (разумеется, при отсутствии других сил). Вид траектории частицы зависит от начальных условий. Если вначале заряженная частица покоилась или ее начальная скорость сонаправлена с ускорением , то частица будет совершать равноускоренное прямолинейное движение вдоль поля и ее скорость будет расти. Если , то частица будет тормозиться в этом поле.

Если угол между начальной скоростью и ускорением острый О < < 90° (или тупой), то заряженная частица в таком электростатическом поле будет двигаться по параболе.

Во всех случаях при движении заряженной частицы в электростатическом поле будет изменяться модуль скорости, а следовательно, и кинетическая энергия частицы.

Существенное отличие магнитного поля от электростатического состоит, во-первых, в том, что магнитное поле не действует на покоящуюся заряженную частицу. Магнитное поле действует только на движущиеся в поле заряженные частицы. Во-вторых, сила Лоренца, действующая на заряженные частицы в магнитном поле, всегда перпендикулярна скорости их движения. Поэтому модуль скорости в магнитном поле не изменяется. Не изменяется, следовательно, и кинетическая энергия частицы. Вид траектории заряженной частицы в магнитном поле зависит от угла между скоростью влетающей в поле частицы и магнитной индукцией. Возможны три различных случая.

Если скорость заряженной частицы составляет угол с направлением вектора неоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, то R и h уменьшаются с ростом B. На этом основана фокусировка заряженных частиц в магнитном поле.

Если на движущуюся заряженную частицу помимо магнитного поля с индукцией действует одновременно и электростатическое поле с напряженностью , то равнодействующая сила, приложенная к частице, равна векторной сумме электрической силы и силы Лоренца

Характер движения и вид траектории зависят в данном случае от соотношения этих сил и от направления электростатического и магнитного полей.

Электрически заряженная частица - это частица, которая обладает положительным или отрицательным зарядом. Это могут быть как атомы, молекулы, так и элементарные частицы. Когда электрически заряженная частица находится в электрическом поле, на нее действует сила Кулона. Значение этой силы, если известно значение в конкретной точке, вычисляется по следующей формуле: F = qE.

мы определили, что электрически заряженная частица, которая находится в электрическом поле, движется под воздействием кулоновской силы.

Теперь рассмотрим Экспериментально было обнаружено, что магнитное поле воздействует на движение заряженных частиц. равна максимальной силе, которая воздействует на скорость движения такой частицы со стороны магнитного поля. Заряженная частица движется с единичной скоростью. Если электрически заряженная частица влетит в магнитное поле с заданной скоростью, то сила, которая действует со стороны поля, будет перпендикулярна скорости частицы и соответственно вектору магнитной индукции: F = q. Поскольку сила, которая действует на частицу, перпендикулярна скорости движения, то и ускорение, задаваемое этой силой также перпендикулярно движению, является нормальным ускорением. Соответственно, прямолинейная будет искривляться при попадании заряженной частицы в магнитное поле. Если частица влетает параллельно линиям магнитной индукции, то не действует на заряженную частицу. Если она влетает перпендикулярно линиям магнитной индукции, то сила, которая действует на частицу, будет максимальной.

Теперь запишем II qvB = mv 2 /R, или R = mv/qB, где m - это масса заряженной частицы, а R - это радиус траектории. Из этого уравнения следует, что частица двигается в однородном поле по окружности радиуса. Так, период обращения заряженной частицы по окружности не зависит от скорости движения. Необходимо отметить, что у электрически заряженной частицы, попавшей в магнитное поле, кинетическая энергия неизменна. Вследствие того что сила перпендикулярна движению частицы в любой из точек траектории, поля, которая действует на частицу, не совершает работу, связанную с перемещением движения заряженной частицы.

Направление силы, воздействующей на движение заряженной частицы в магнитном поле, можно определить при помощи «правила левой руки». Для этого необходимо расположить левую ладонь таким образом, чтобы четыре пальца указывали направление скорости движения заряженной частицы, ну а линии магнитной индукции были направлены в центр ладони, в таком случае отогнутый под углом в 90 градусов большой палец будет показывать направление силы, которая действует на положительно заряженную частицу. В том случае, если частица имеет отрицательный заряд, то направление силы будет противоположным.

Если же электрически заряженная частица попадет в область совместного воздействия магнитного и электрического полей, то на нее будет действовать сила, называемая силой Лоренца: F = qE + q. Первое слагаемое при этом относиться к электрическому компоненту, а второе - к магнитному.

ГЛАВА 26. ПОТОКИ ЗАРЯЖЕННЫХ ЧАСТИЦ

Простейшим, во всяком случае в классификационном смысле, видом вещества является некоторая совокупность заряженных частиц - электронов и ионов. Мы встречаемся с системами заряженных частиц либо в виде пучков частиц, в которых все частицы имеют общую скорость и движутся в одном направлении, либо в виде газа хаотически движущихся частиц. Разумеется, возможны и промежуточные состояния. В этой главе будут рассмотрены основные физические явления и технические устройства, в которых мы имеем дело с пучками и с плазмой. Вопросы эмиссии электронов, непосредственно связанные с физикой твердого тела, будут изложены в гл. 37.

§ 167. Движение заряженной частицы в электрическом и магнитном полях

Произвольное электромагнитное поле действует на заряженную частицу с силой (стр. 239). Если поля известны в функции координат и времени и даны начальная скорость и место нахождения частицы, то для частиц, движущихся со скоростями траектория частицы может быть найдена с помощью основного закона механики

Решение такой задачи представляет обычно большие математические трудности. Для знакомства с закономерностями общего характера вполне достаточно рассмотреть движение заряда в однородном поле.

Частица в электрическом поле.

Частица входит в поле под углом (рис. 190). При выборе координат, указанном на рисунке,

уравнения движения имеют вид

Интегрируя еще раз, получим, полагая при

Исключая время, найдем уравнение параболической кривой, которую будет описывать электрический заряд (пунктир на рис. 190).

Если частица входит в поле под прямым углом то уравнение траектории имеет вид

Если частица входит в поле вдоль силовой линии, то она и будет продолжать движение вдоль силовой линии с ускорением

Обозначая разность потенциалов точек начала и конца движения заряженной частицы через V, получим с помощью уравнения кинетической энергии

Если конечная скорость то

Это уравнение делает понятным распространенность единицы энергии электрон-вольт:

Это - работа, необходимая для ускорения электрона напряжением 1 В. Единица «электрон-вольт» удобна в тех случаях, когда энергии относят к одной элементарной частице. Работа ионизации, вырывания электрона, выхода электрона из металла - все эти величины имеют порядок единиц и десятков электрон-вольт.

Частица в магнитном поле.

Особенности силы, действующей на заряженную частицу в магнитном поле, нам известны (стр. 240). Пусть частица во шла в поле с начальной скоростью Разложим этот вектор на составляющие вдоль и поперек поля, и Тогда для движения в плоскости, перпендикулярной к полю, имеем

Продольное движение будет происходить равномерно с неизменной скоростью

Движение в перпендикулярной плоскости - круговое, есть центростремительное ускорение. Таким образом,

откуда радиус окружности прямо пропорционален скорости частицы и обратно пропорционален магнитной индукции. Существенно запомнить, что угловая скорость обращения около силовой линии У частиц данного сорта в заданном поле будет одинаковой.

Вне зависимости от величин и направлений скоростей все частицы будут обертываться около силовой линии за одно и то же время.

Если частица вошла в поле под углом к направлению поля, то она будет двигаться по спирали с радиусом витка и с частотой со (рис. 191). Проекция скорости на направление силовых линий позволит найти шаг спирали:

Существенно, что величина где а - угол начальной скорости с полем, с большой точностью постоянна даже при угле разброса начальных скоростей 5-10° (при этом значения будут разниться не более чем на Отсюда следует, что через каждые сантиметров расходящийся (в указанных пределах) пучок заряженных частиц будет собираться в точку, т. е. фокусироваться на образующей цилиндра (на который навивается спиральная траектория), проходящей через точку входа частиц в поле.

Как известно, сила, действующая на заряженную частицу в электромагнитном поле, имеет вид F=q(E+rxB). (12.1) При заданных полях Е и В задача о движении заряда в поле -это обычная задача классической механики о движении частицы под действием известных сил. Строго говоря, движущаяся с ускорением заряженная частица излучает электромагнитные волны и испытывает с их стороны ответное воздействие. Но этот эффект, вообще говоря, мал, и во многих случаях им можно полностью пренебречь. Но даже и тогда задача остается очень сложной, если заданные внешние поля неоднородны. В однородных электрическом и магнитном полях движение заряженной частицы происходит достаточно просто и может быть изучено элементарными методами. Движение заряженной частицы в однородном электрическом поле совершенно аналогично движению материальной точки в однородном поле тяжести. Оно происходит с постоянным по модулю и направлению Ускорением, равным произведению удельного заряда частицы qjm на напряженность поля Е. Траектория такого движения в общем случае представляет собой параболу. Именно так движутся электроны в пространстве между отклоняющими пластинами в электроннолучевой трубке осциллографа с электростатическим управлением. Движение заряженной частицы в однородном магнитном поле под действием силы Лоренца qvxB происходит следующим образом. В плоскости, перпендикулярной индукции магнитного поля, частица равномерно обращается по окружности. Радиус этой окружности пропорционален перпендикулярной магнитному полю составляющей скорости частицы, а частота обращения от скорости не зависит и равна произведению удельного заряда частицы на индукцию магнитного поля. Если при этом частица имеет еще и составляющую скорости вдоль магнитного поля, то на такое вращение накладывается равномерное движение вдоль поля, так что траектория результирующего движения представляет собой винтовую линию. Сила Лоренца, действующая перпендикулярно скорости частицы, не меняет модуль скорости и, следовательно, кинетическую энергию частицы. Интересно отметить, что при небольшом разбросе значений продольной составляющей скорости частиц движение в однородном магнитном поле обладает замечательным свойством фокусировки: выходящий из одной точки и направленный вдоль поля слегка расходящийся пучок заряженных частиц на некотором расстоянии вновь собирается в одну точку. Это свойство продольной фокусировки было использовано в 1922 г. Бушем для точного измерения удельного заряда электрона. Разберем опыт Буша подробно. Рассмотрим устройство, изображенное на рис. 12.1: электронно-лучевая трубка без управляющих пластин помещена внутрь соленоида, создающего однородное магнитное поле, направленное вдоль оси трубки. В отсутствие магнитного поля электроны летят прямолинейно и образуют на флуоресцирующем экране широкое светящееся пятно, регулируя силу тока в соленоиде и тем самым изменяя индукцию магнитного поля, можно добиться того, что электроны соберутся на экране в яркую светящуюся точку. Выясним причину фокусировки электронов. Из электронной пушки электроны вылетают с приблизительно одинаковыми по модулю скоростями, но с некоторым разбросом по направлению. Скорость электрона v можно определить с помощью закона сохранения энергии: ^ = (12.2) где е - абсолютная величина заряда электрона, a U- ускоряющее напряжение между катодом и ускоряющим анодом электронной пушки. На электрон, летящий вдоль магнитного поля, сила Лоренца не действует. Поэтому электрон, вылетевший из пушки вдоль оси трубки, движется прямолинейно и попадает в центр экрана. Если же электрон вылетел под некоторым углом ос к оси трубки и, следовательно, у него есть составляющая начальной скорости, перпендикулярная магнитному полю, то, как мы видели, траектория электрона представляет собой винтовую линию: его движение есть результат сложения равномерного движения вдоль оси трубки со"скоростью v ц = v cos а и равномерного обращения по окружности в плоскости, перпендикулярной оси трубки, со скоростью tfj^Dsina. Угловая скорость вращения электрона по окружности определяется с помощью второго закона Ньютона: ^=eBv±, (12.3) к где R - радиус окружности. Учитывая связь между линейной и угловой скоростями v± = (ocR, с помощью (12.3) найдем еВ сос = -. (12.4) т Замечательно, что угловая скорость и, следовательно, период обращения не зависят от скорости. Поэтому электроны, вылетевшие из пушки под разными углами, совершают полный оборот за одно и то же время. Поскольку электроны вылетают из пушки под малыми углами к оси трубки (cosa« 1), то все они движутся вдоль оси трубки практически с одной и той же скоростью v^v и за время одного оборота Г=2л/юс проходят вдоль оси трубки одно и то же расстояние L; L = -. (12.5) Это означает, что все винтовые линии, по которым движутся электроны, пересекают ось трубки практически в одной и той же точке, отстоящей на расстояние L от пушки. Такая же фокусировка происходит и после совершения электронами двух, трех и т. д. оборотов, т. е. на расстояниях 2L, 3L и т. д. от пушки. Если положение одной из этих точек совпадет с плоскостью экрана, то пятно на экране сожмется в яркую точку. Разумеется, расстояние от электронной пушки до экрана определяется конструкцией трубки и не изменяется во время опыта, но мы можем изменять шаг винтовой линии L, регулируя индукцию магнитного поля В или ускоряющее напряжение U. Подставляя скорость электронов v из (12.2) и угловую скорость вращения шс из (12.4) в формулу (12.5), получаем соотношение е 8я2 U (12.6) L В Если при неизменном ускоряющем напряжении U мы добьемся фокусировки пучка электронов, постепенно увеличивая индукцию магнитного поля В от нуля, то формула (12.6) может быть использована для вычисления отношения е/т. Для этого в правую часть нужно подставить значения U и В, при которых произошла фокусировка, а в качестве L взять расстояние от электронной пушки до экрана трубки. Если теперь продолжать увеличивать индукцию магнитного поля, то пятно на экране будет сначала расплываться, а затем снова сожмется в яркую точку. Ясно, что теперь электроны успевают совершить два полных оборота по винтовой линии до того, как попадают на экран. Для нахождения е/га в формулу (12.6) в качестве L в этом случае следует подставлять половину расстояния от пушки до экрана. Отметим, что достигнутая этим методом точность измерения удельного заряда электрона составляет величину порядка десятой доли процента. В настоящее время явление фокусировки пучка электронов продольным магнитным полем используется во многих электронно-оптических приборах. Перейдем теперь к рассмотрению движения заряженной частицы в постоянных однородных взаимно перпендикулярных (так называемых скрещенных) электрическом и магнитном полях. Будем считать, что в начальный момент частица покоится. На первый взгляд кажется, что движение частицы будет весьма замысловатым. В самом деле, на неподвижную частицу магнитное поле не действует, но, как только под действием электрического поля она приобретает некоторую скорость, так немедленно магнитное поле будет искривлять ее траекторию. Однако, несмотря на кажущуюся сложность, в данном случае удается полностью исследовать движение частицы с помощью,весьма простых рассуждений. Выберем систему координат таким образом, чтобы ось 7 была направлена вдоль вектора индукции магнитного поля В, а ось у - вдоль вектора напряженности электрического поля Е. Начало системы координат поместим в ту точку, где в начальный момент времени покоилась частица (рис. 12.2). Пусть для определенности заряд частицы q положителен. Прежде всего убедимся, что траектория представляет собой плоскую кривую. Первоначально покоившейся частице электрическое поле сообщает ускорение и, следовательно, скорость вдоль оси у. Поскольку сила, действующая на частицу со стороны магнитного поля, перпендикулярна как индукции поля, так и скорости частицы, то и эта сила также действует в плоскости ху. Другими словами, ускорение частицы, а следовательно, и скорость вдоль оси z равны нулю: частица никогда не сможет покинуть плоскость ху. Но и в плоскости ху первоначально покоившаяся положительно заряженная частица может двигаться только в верхней полуплоскости (у 5=0). В этом проще всего убедиться из энергетических соображений. В самом деле, постоянное магнитное поле, действуя перпендикулярно скорости, работы не совершает, а посто- \ янное электрическое поле потенциально. В рассматриваемом однородном электрическом поле потенциальная энергия заряженной частицы зависит только от координаты у, и наша частица, оказавшись ниже оси дс, имела бы полную энергию большую, чем в начальный момент. Самое большее - частица сможет только дойти до оси л:, но при этом скорость ее должна обратиться в нуль. Чтобы продвинуться дальше в выяснении вопроса о форме траектории, забудем на время о начальных условиях и задумаемся над таким вопросом: может: ли заряженная частица в скрещенных электрическом и магнитном полях двигаться с постоянной скоростью? Очевидно, что для этого полная сила, действующая на частицу, должна быть равна нулю, т. е. магнитная и электрическая силы должны быть равны по модулю и противоположны по направлению. Электрическая сила, действующая на положительно заряженную частицу, направлена вдоль оси у, следовательно, магнитная должна быть направлена в отрицательном направлении этой оси. Нетрудно убедиться, что для этого скорость частицы должна быть направлена вдоль оси х. Модуль скорости определяется из соотношения qE=qvB, (12.7). откуда » = (12-8) Поскольку скорость частицы не может превышать скорости света в вакууме с, то из формулы (12.8) видно, что движение заряженной частицы в "скрещенных полях с постоянной скоростью возможно только при Ея 7. Объясните возможность использования электродвигателя постоянного тока в качестве электрогенератора, основываясь на законе сохранения энергии. 8. Может ли заряженная частица в скрещенных электрическом и магнитном полях двигаться прямолинейно и равномерно?