Как решать тригонометрические уравнения с разными углами. Как научить решать тригонометрические уравнения и неравенства: методика преподавания

Концепция решения тригонометрических уравнений.

  • Для решения тригонометрического уравнения преобразуйте его в одно или несколько основных тригонометрических уравнений. Решение тригонометрического уравнения в конечном итоге сводится к решению четырех основных тригонометрических уравнений.
  • Решение основных тригонометрических уравнений.

    • Существуют 4 вида основных тригонометрических уравнений:
    • sin x = a; cos x = a
    • tg x = a; ctg x = a
    • Решение основных тригонометрических уравнений подразумевает рассмотрение различных положений «х» на единичной окружности, а также использование таблицы преобразования (или калькулятора).
    • Пример 1. sin x = 0,866. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = π/3. Единичная окружность дает еще один ответ: 2π/3. Запомните: все тригонометрические функции являются периодическими, то есть их значения повторяются. Например, периодичность sin x и cos x равна 2πn, а периодичность tg x и ctg x равна πn. Поэтому ответ записывается следующим образом:
    • x1 = π/3 + 2πn; x2 = 2π/3 + 2πn.
    • Пример 2. соs х = -1/2. Используя таблицу преобразования (или калькулятор), вы получите ответ: х = 2π/3. Единичная окружность дает еще один ответ: -2π/3.
    • x1 = 2π/3 + 2π; х2 = -2π/3 + 2π.
    • Пример 3. tg (x - π/4) = 0.
    • Ответ: х = π/4 + πn.
    • Пример 4. ctg 2x = 1,732.
    • Ответ: х = π/12 + πn.
  • Преобразования, используемые при решении тригонометрических уравнений.

    • Для преобразования тригонометрических уравнений используются алгебраические преобразования (разложение на множители, приведение однородных членов и т.д.) и тригонометрические тождества.
    • Пример 5. Используя тригонометрические тождества, уравнение sin x + sin 2x + sin 3x = 0 преобразуется в уравнение 4cos x*sin (3x/2)*cos (x/2) = 0. Таким образом, нужно решить следующие основные тригонометрические уравнения: cos x = 0; sin (3x/2) = 0; cos (x/2) = 0.
    • Нахождение углов по известным значениям функций.

      • Перед изучением методов решения тригонометрических уравнений вам необходимо научиться находить углы по известным значениям функций. Это можно сделать при помощи таблицы преобразования или калькулятора.
      • Пример: соs х = 0,732. Калькулятор даст ответ х = 42,95 градусов. Единичная окружность даст дополнительные углы, косинус которых также равен 0,732.
    • Отложите решение на единичной окружности.

      • Вы можете отложить решения тригонометрического уравнения на единичной окружности. Решения тригонометрического уравнения на единичной окружности представляют собой вершины правильного многоугольника.
      • Пример: Решения x = π/3 + πn/2 на единичной окружности представляют собой вершины квадрата.
      • Пример: Решения x = π/4 + πn/3 на единичной окружности представляют собой вершины правильного шестиугольника.
    • Методы решения тригонометрических уравнений.

      • Если данное тригонометрическое уравнение содержит только одну тригонометрическую функцию, решите это уравнение как основное тригонометрическое уравнение. Если данное уравнение включает две или более тригонометрические функции, то существуют 2 метода решения такого уравнения (в зависимости от возможности его преобразования).
        • Метод 1.
      • Преобразуйте данное уравнение в уравнение вида: f(x)*g(x)*h(x) = 0, где f(x), g(x), h(x) - основные тригонометрические уравнения.
      • Пример 6. 2cos x + sin 2x = 0. (0 < x < 2π)
      • Решение. Используя формулу двойного угла sin 2x = 2*sin х*соs х, замените sin 2x.
      • 2соs х + 2*sin х*соs х = 2cos х*(sin х + 1) = 0. Теперь решите два основных тригонометрических уравнения: соs х = 0 и (sin х + 1) = 0.
      • Пример 7. cos x + cos 2x + cos 3x = 0. (0 < x < 2π)
      • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: cos 2x(2cos x + 1) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2cos x + 1) = 0.
      • Пример 8. sin x - sin 3x = cos 2x . (0 < x < 2π)
      • Решение: Используя тригонометрические тождества, преобразуйте данное уравнение в уравнение вида: -cos 2x*(2sin x + 1) = 0. Теперь решите два основных тригонометрических уравнения: cos 2x = 0 и (2sin x + 1) = 0.
        • Метод 2.
      • Преобразуйте данное тригонометрическое уравнение в уравнение, содержащее только одну тригонометрическую функцию. Затем замените эту тригонометрическую функцию на некоторую неизвестную, например, t (sin x = t; cos x = t; cos 2x = t, tg x = t; tg (x/2) = t и т.д.).
      • Пример 9. 3sin^2 x - 2cos^2 x = 4sin x + 7 (0 < x < 2π).
      • Решение. В данном уравнении замените (cos^2 x) на (1 - sin^2 x) (согласно тождеству). Преобразованное уравнение имеет вид:
      • 3sin^2 x - 2 + 2sin^2 x - 4sin x - 7 = 0. Замените sin х на t. Теперь уравнение имеет вид: 5t^2 - 4t - 9 = 0. Это квадратное уравнение, имеющее два корня: t1 = -1 и t2 = 9/5. Второй корень t2 не удовлетворяет области значений функции (-1 < sin x < 1). Теперь решите: t = sin х = -1; х = 3π/2.
      • Пример 10. tg x + 2 tg^2 x = ctg x + 2
      • Решение. Замените tg x на t. Перепишите исходное уравнение в следующем виде: (2t + 1)(t^2 - 1) = 0. Теперь найдите t, а затем найдите х для t = tg х.
    • Особые тригонометрические уравнения.

      • Есть несколько особых тригонометрических уравнений, которые требуют конкретных преобразований. Примеры:
      • a*sin x+ b*cos x = c ; a(sin x + cos x) + b*cos x*sin x = c;
      • a*sin^2 x + b*sin x*cos x + c*cos^2 x = 0
    • Периодичность тригонометрических функций.

      • Как упоминалось ранее, все тригонометрические функции являются периодическими, то есть их значения повторяются через определенный период. Примеры:
        • Период функции f(x) = sin x равен 2π.
        • Период функции f(x) = tg x равен π.
        • Период функции f(x) = sin 2x равен π.
        • Период функции f(x) = cos (x/2) равен 4π.
      • Если период указан в задаче, вычислите значение «х» в пределах этого периода.
      • Примечание: решение тригонометрических уравнений – непростая задача, которая часто приводит к ошибкам. Поэтому тщательно проверяйте ответы. Для этого можно использовать графический калькулятор, чтобы построить график данного уравнения R(х) = 0. В таких случаях решения будут представлены в виде десятичных дробей (то есть π заменяется на 3,14).
  • Тригонометрические уравнения - тема не самая простая. Уж больно они разнообразные.) Например, такие:

    sin 2 x + cos3x = ctg5x

    sin(5x+π /4) = ctg(2x-π /3)

    sinx + cos2x + tg3x = ctg4x

    И тому подобное...

    Но у этих (и всех остальных) тригонометрических монстров есть два общих и обязательных признака. Первый - вы не поверите - в уравнениях присутствуют тригонометрические функции.) Второй: все выражения с иксом находятся внутри этих самых функций. И только там! Если икс появится где-нибудь снаружи, например, sin2x + 3x = 3, это уже будет уравнение смешанного типа. Такие уравнения требуют индивидуального подхода. Здесь мы их рассматривать не будем.

    Злые уравнения в этом уроке мы тоже решать не будем.) Здесь мы будем разбираться с самыми простыми тригонометрическими уравнениями. Почему? Да потому, что решение любых тригонометрических уравнений состоит из двух этапов. На первом этапе злое уравнение путём самых различных преобразований сводится к простому. На втором - решается это самое простое уравнение. Иначе - никак.

    Так что, если на втором этапе у вас проблемы - первый этап особого смысла не имеет.)

    Как выглядят элементарные тригонометрические уравнения?

    sinx = а

    cosx = а

    tgx = а

    ctgx = а

    Здесь а обозначает любое число. Любое.

    Кстати, внутри функции может находиться не чистый икс, а какое-то выражение, типа:

    cos(3x+π /3) = 1/2

    и тому подобное. Это усложняет жизнь, но на методе решения тригонометрического уравнения никак не сказывается.

    Как решать тригонометрические уравнения?

    Тригонометрические уравнения можно решать двумя путями. Первый путь: с использованием логики и тригонометрического круга. Этот путь мы рассмотрим здесь. Второй путь - с использованием памяти и формул - рассмотрим в следующем уроке.

    Первый путь понятен, надёжен, и его трудно забыть.) Он хорош для решения и тригонометрических уравнений, и неравенств, и всяких хитрых нестандартных примеров. Логика сильнее памяти!)

    Решаем уравнения с помощью тригонометрического круга.

    Включаем элементарную логику и умение пользоваться тригонометрическим кругом. Не умеете!? Однако... Трудно же вам в тригонометрии придётся...) Но не беда. Загляните в уроки "Тригонометрический круг...... Что это такое?" и "Отсчёт углов на тригонометрическом круге". Там всё просто. В отличие от учебников...)

    Ах, вы в курсе!? И даже освоили "Практическую работу с тригонометрическим кругом" !? Примите поздравления. Эта тема будет вам близка и понятна.) Что особо радует, тригонометрическому кругу безразлично, какое уравнение вы решаете. Синус, косинус, тангенс, котангенс - ему всё едино. Принцип решения один.

    Вот и берём любое элементарное тригонометрическое уравнение. Хотя бы это:

    cosx = 0,5

    Надо найти икс. Если говорить человеческим языком, нужно найти угол (икс), косинус которого равен 0,5.

    Как мы ранее использовали круг? Мы рисовали на нём угол. В градусах или радианах. И сразу видели тригонометрические функции этого угла. Сейчас поступим наоборот. Нарисуем на круге косинус, равный 0,5 и сразу увидим угол. Останется только записать ответ.) Да-да!

    Рисуем круг и отмечаем косинус, равный 0,5. На оси косинусов, разумеется. Вот так:

    Теперь нарисуем угол, который даёт нам этот косинус. Наведите курсор мышки на рисунок (или коснитесь картинки на планшете), и увидите этот самый угол х.

    Косинус какого угла равен 0,5?

    х = π /3

    cos60° = cos(π /3 ) = 0,5

    Кое-кто скептически хмыкнет, да... Мол, стоило ли круг городить, когда и так всё ясно... Можно, конечно, хмыкать...) Но дело в том, что это - ошибочный ответ. Вернее, недостаточный. Знатоки круга понимают, что здесь ещё целая куча углов, которые тоже дают косинус, равный 0,5.

    Если провернуть подвижную сторону ОА на полный оборот , точка А попадёт в исходное положение. С тем же косинусом, равным 0,5. Т.е. угол изменится на 360° или 2π радиан, а косинус - нет. Новый угол 60° + 360° = 420° тоже будет решением нашего уравнения, т.к.

    Таких полных оборотов можно накрутить бесконечное множество... И все эти новые углы будут решениями нашего тригонометрического уравнения. И их все надо как-то записать в ответ. Все. Иначе решение не считается, да...)

    Математика умеет это делать просто и элегантно. В одном кратком ответе записывать бесконечное множество решений. Вот как это выглядит для нашего уравнения:

    х = π /3 + 2π n, n ∈ Z

    Расшифрую. Всё-таки писать осмысленно приятнее, чем тупо рисовать какие-то загадочные буковки, правда?)

    π /3 - это тот самый угол, который мы увидели на круге и определили по таблице косинусов.

    - это один полный оборот в радианах.

    n - это количество полных, т.е. целых оборотов. Понятно, что n может быть равно 0, ±1, ±2, ±3.... и так далее. Что и указано краткой записью:

    n ∈ Z

    n принадлежит ( ) множеству целых чисел (Z ). Кстати, вместо буквы n вполне могут употребляться буквы k, m, t и т.д.

    Эта запись означает, что вы можете взять любое целое n . Хоть -3, хоть 0, хоть +55. Какое хотите. Если подставите это число в запись ответа, получите конкретный угол, который обязательно будет решением нашего сурового уравнения.)

    Или, другими словами, х = π /3 - это единственный корень из бесконечного множества. Чтобы получить все остальные корни, достаточно к π /3 прибавить любое количество полных оборотов (n ) в радианах. Т.е. 2π n радиан.

    Всё? Нет. Я специально удовольствие растягиваю. Чтобы запомнилось получше.) Мы получили только часть ответов к нашему уравнению. Эту первую часть решения я запишу вот как:

    х 1 = π /3 + 2π n, n ∈ Z

    х 1 - не один корень, это целая серия корней, записанная в краткой форме.

    Но есть ещё углы, которые тоже дают косинус, равный 0,5!

    Вернёмся к нашей картинке, по которой записывали ответ. Вот она:

    Наводим мышку на картинку и видим ещё один угол, который тоже даёт косинус 0,5. Как вы думаете, чему он равен? Треугольнички одинаковые... Да! Он равен углу х , только отложен в отрицательном направлении. Это угол -х. Но икс-то мы уже вычислили. π /3 или 60°. Стало быть, можно смело записать:

    х 2 = - π /3

    Ну и, разумеется, добавляем все углы, которые получаются через полные обороты:

    х 2 = - π /3 + 2π n, n ∈ Z

    Вот теперь всё.) По тригонометрическому кругу мы увидели (кто понимает, конечно)) все углы, дающие косинус, равный 0,5. И записали эти углы в краткой математической форме. В ответе получились две бесконечные серии корней:

    х 1 = π /3 + 2π n, n ∈ Z

    х 2 = - π /3 + 2π n, n ∈ Z

    Это правильный ответ.

    Надеюсь, общий принцип решения тригонометрических уравнений с помощью круга понятен. Отмечаем на круге косинус (синус, тангенс, котангенс) из заданного уравнения, рисуем соответствующие ему углы и записываем ответ. Конечно, нужно сообразить, что за углы мы увидели на круге. Иногда это не так очевидно. Ну так я и говорил, что здесь логика требуется.)

    Для примера разберём ещё одно тригонометрическое уравнение:

    Прошу учесть, что число 0,5 - это не единственно возможное число в уравнениях!) Просто мне его писать удобнее, чем корни и дроби.

    Работаем по общему принципу. Рисуем круг, отмечаем (на оси синусов, разумеется!) 0,5. Рисуем сразу все углы, соответствующие этому синусу. Получим вот такую картину:

    Сначала разбираемся с углом х в первой четверти. Вспоминаем таблицу синусов и определяем величину этого угла. Дело нехитрое:

    х = π /6

    Вспоминаем про полные обороты и, с чистой совестью, записываем первую серию ответов:

    х 1 = π /6 + 2π n, n ∈ Z

    Половина дела сделана. А вот теперь надо определить второй угол... Это похитрее, чем в косинусах, да... Но логика нас спасёт! Как определить второй угол через х? Да легко! Треугольнички на картинке одинаковые, и красный угол х равен углу х . Только отсчитан он от угла π в отрицательном направлении. Потому и красный.) А нам для ответа нужен угол, отсчитанный правильно, от положительной полуоси ОХ, т.е. от угла 0 градусов.

    Наводим курсор на рисунок и всё видим. Первый угол я убрал, чтобы не усложнял картинку. Интересующий нас угол (нарисован зелёным) будет равен:

    π - х

    Икс мы знаем, это π /6 . Стало быть, второй угол будет:

    π - π /6 = 5π /6

    Снова вспоминаем про добавку полных оборотов и записываем вторую серию ответов:

    х 2 = 5π /6 + 2π n, n ∈ Z

    Вот и всё. Полноценный ответ состоит из двух серий корней:

    х 1 = π /6 + 2π n, n ∈ Z

    х 2 = 5π /6 + 2π n, n ∈ Z

    Уравнения с тангенсом и котангенсом можно легко решать по тому же общему принципу решения тригонометрических уравнений. Если, конечно, знаете, как нарисовать тангенс и котангенс на тригонометрическом круге.

    В приведённых выше примерах я использовал табличное значение синуса и косинуса: 0,5. Т.е. одно из тех значений, которые ученик знать обязан. А теперь расширим наши возможности на все остальные значения. Решать, так решать!)

    Итак, пусть нам надо решить вот такое тригонометрическое уравнение:

    Такого значения косинуса в кратких таблицах нет. Хладнокровно игнорируем этот жуткий факт. Рисуем круг, отмечаем на оси косинусов 2/3 и рисуем соответствующие углы. Получаем вот такую картинку.

    Разбираемся, для начала, с углом в первой четверти. Знать бы, чему равен икс, сразу бы ответ записали! Не знаем... Провал!? Спокойствие! Математика своих в беде не бросает! Она на этот случай придумала арккосинусы. Не в курсе? Зря. Выясните, Это много проще, чем вы думаете. По этой ссылке ни одного мудрёного заклинания насчёт "обратных тригонометрических функций" нету... Лишнее это в данной теме.

    Если вы в курсе, достаточно сказать себе: "Икс - это угол, косинус которого равен 2/3". И сразу, чисто по определению арккосинуса, можно записать:

    Вспоминаем про дополнительные обороты и спокойно записываем первую серию корней нашего тригонометрического уравнения:

    х 1 = arccos 2/3 + 2π n, n ∈ Z

    Практически автоматом записывается и вторая серия корней, для второго угла. Всё то же самое, только икс (arccos 2/3) будет с минусом:

    х 2 = - arccos 2/3 + 2π n, n ∈ Z

    И все дела! Это правильный ответ. Даже проще, чем с табличными значениями. Ничего вспоминать не надо.) Кстати, самые внимательные заметят, что эта картинка с решением через арккосинус ничем, в сущности, не отличается от картинки для уравнения cosx = 0,5.

    Именно так! Общий принцип на то и общий! Я специально нарисовал две почти одинаковые картинки. Круг нам показывает угол х по его косинусу. Табличный это косинус, или нет - кругу неведомо. Что это за угол, π /3, или арккосинус какой - это уж нам решать.

    С синусом та же песня. Например:

    Вновь рисуем круг, отмечаем синус, равный 1/3, рисуем углы. Получается вот такая картина:

    И опять картинка почти та же, что и для уравнения sinx = 0,5. Опять начинаем с угла в первой четверти. Чему равен икс, если его синус равен 1/3 ? Не вопрос!

    Вот и готова первая пачка корней:

    х 1 = arcsin 1/3 + 2π n, n ∈ Z

    Разбираемся со вторым углом. В примере с табличным значением 0,5 он был равен:

    π - х

    Так и здесь он будет точно такой же! Только икс другой, arcsin 1/3. Ну и что!? Можно смело записывать вторую пачку корней:

    х 2 = π - arcsin 1/3 + 2π n, n ∈ Z

    Это совершенно правильный ответ. Хотя и выглядит не очень привычно. Зато понятно, надеюсь.)

    Вот так решаются тригонометрические уравнения с помощью круга. Этот путь нагляден и понятен. Именно он спасает в тригонометрических уравнениях с отбором корней на заданном интервале, в тригонометрических неравенствах - те вообще решаются практически всегда по кругу. Короче, в любых заданиях, которые чуть сложнее стандартных.

    Применим знания на практике?)

    Решить тригонометрические уравнения:

    Сначала попроще, прямо по этому уроку.

    Теперь посложнее.

    Подсказка: здесь придётся поразмышлять над кругом. Лично.)

    А теперь внешне простенькие... Их ещё частными случаями называют.

    sinx = 0

    sinx = 1

    cosx = 0

    cosx = -1

    Подсказка: здесь надо сообразить по кругу, где две серии ответов, а где одна... И как вместо двух серий ответов записать одну. Да так, чтобы ни один корень из бесконечного количества не потерялся!)

    Ну и совсем простые):

    sinx = 0,3

    cosx = π

    tgx = 1,2

    ctgx = 3,7

    Подсказка: здесь надо знать, что такое арксинус, арккосинус? Что такое арктангенс, арккотангенс? Самые простые определения. Зато вспоминать никаких табличных значений не надо!)

    Ответы, разумеется, в беспорядке):

    х 1 = arcsin0,3 + 2π n, n ∈ Z
    х 2 = π - arcsin0,3 + 2

    Не всё получается? Бывает. Прочтите урок ещё раз. Только вдумчиво (есть такое устаревшее слово...) И по ссылкам походите. Главные ссылки - про круг. Без него в тригонометрии - как дорогу переходить с завязанными глазами. Иногда получается.)

    Если Вам нравится этот сайт...

    Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

    Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

    можно познакомиться с функциями и производными.


    Примеры:

    \(2\sin{⁡x} = \sqrt{3}\)
    tg\({3x}=-\) \(\frac{1}{\sqrt{3}}\)
    \(4\cos^2⁡x+4\sin⁡x-1=0\)
    \(\cos⁡4x+3\cos⁡2x=1\)

    Как решать тригонометрические уравнения:

    Любое тригонометрическое уравнение нужно стремиться свести к одному из видов:

    \(\sin⁡t=a\), \(\cos⁡t=a\), tg\(t=a\), ctg\(t=a\)

    где \(t\) – выражение с иксом, \(a\) – число. Такие тригонометрические уравнения называются простейшими . Их легко решать с помощью () или специальных формул:


    Инфографику о решении простейших тригонометрических уравнений смотри здесь: , и .

    Пример . Решите тригонометрическое уравнение \(\sin⁡x=-\)\(\frac{1}{2}\).
    Решение:

    Ответ: \(\left[ \begin{gathered}x=-\frac{π}{6}+2πk, \\ x=-\frac{5π}{6}+2πn, \end{gathered}\right.\)\(k,n∈Z\)

    Что означает каждый символ в формуле корней тригонометрических уравнений смотри в .

    Внимание! Уравнения \(\sin⁡x=a\) и \(\cos⁡x=a\) не имеют решений, если \(a ϵ (-∞;-1)∪(1;∞)\). Потому что синус и косинус при любых икс больше или равны \(-1\) и меньше или равны \(1\):

    \(-1≤\sin x≤1\) \(-1≤\cos⁡x≤1\)

    Пример . Решить уравнение \(\cos⁡x=-1,1\).
    Решение: \(-1,1<-1\), а значение косинуса не может быть меньше \(-1\). Значит у уравнения нет решения.
    Ответ : решений нет.


    Пример . Решите тригонометрическое уравнение tg\(⁡x=1\).
    Решение:

    Решим уравнение с помощью числовой окружности. Для этого:
    1) Построим окружность)
    2) Построим оси \(x\) и \(y\) и ось тангенсов (она проходит через точку \((0;1)\) параллельно оси \(y\)).
    3) На оси тангенсов отметим точку \(1\).
    4) Соединим эту точку и начало координат - прямой.
    5) Отметим точки пересечения этой прямой и числовой окружности.
    6)Подпишем значения этих точек: \(\frac{π}{4}\) ,\(\frac{5π}{4}\)
    7) Запишем все значения этих точек. Так как они находятся друг от друга на расстоянии ровно в \(π\), то все значения можно записать одной формулой:

    Ответ: \(x=\)\(\frac{π}{4}\) \(+πk\), \(k∈Z\).

    Пример . Решите тригонометрическое уравнение \(\cos⁡(3x+\frac{π}{4})=0\).
    Решение:


    Опять воспользуемся числовой окружностью.
    1) Построим окружность, оси \(x\) и \(y\).
    2) На оси косинусов (ось \(x\)) отметим \(0\).
    3) Проведем перпендикуляр к оси косинусов через эту точку.
    4) Отметим точки пересечения перпендикуляра и окружности.
    5) Подпишем значения этих точек: \(-\)\(\frac{π}{2}\),\(\frac{π}{2}\) .
    6)Выпишем все значение этих точек и приравняем их к косинуса (к тому что внутри косинуса).

    \(3x+\)\(\frac{π}{4}\) \(=±\)\(\frac{π}{2}\) \(+2πk\), \(k∈Z\)

    \(3x+\)\(\frac{π}{4}\) \(=\)\(\frac{π}{2}\) \(+2πk\) \(3x+\)\(\frac{π}{4}\) \(=-\)\(\frac{π}{2}\) \(+2πk\)

    8) Как обычно в уравнениях будем выражать \(x\).
    Не забывайте относиться к числам с \(π\), так же к \(1\), \(2\), \(\frac{1}{4}\) и т.п. Это такие же числа, как и все остальные. Никакой числовой дискриминации!

    \(3x=-\)\(\frac{π}{4}\) \(+\)\(\frac{π}{2}\) \(+2πk\) \(3x=-\)\(\frac{π}{4}\) \(+\)\(\frac{π}{2}\) \(+2πk\)
    \(3x=\)\(\frac{π}{4}\) \(+2πk\) \(|:3\) \(3x=-\)\(\frac{3π}{4}\) \(+2πk\) \(|:3\)
    \(x=\)\(\frac{π}{12}\) \(+\)\(\frac{2πk}{3}\) \(x=-\)\(\frac{π}{4}\) \(+\)\(\frac{2πk}{3}\)

    Ответ: \(x=\)\(\frac{π}{12}\) \(+\)\(\frac{2πk}{3}\) \(x=-\)\(\frac{π}{4}\) \(+\)\(\frac{2πk}{3}\) , \(k∈Z\).

    Сводить тригонометрические уравнения к простейшим – задача творческая, тут нужно использовать и , и особые методы решений уравнений:
    - Метод (самый популярный в ЕГЭ).
    - Метод .
    - Метод вспомогательных аргументов.


    Рассмотрим пример решения квадратно-тригонометрического уравнения

    Пример . Решите тригонометрическое уравнение \(2\cos^2⁡x-5\cos⁡x+2=0\)
    Решение:

    \(2\cos^2⁡x-5\cos⁡x+2=0\)

    Сделаем замену \(t=\cos⁡x\).

    Наше уравнение превратилось в типичное . Можно его решить с помощью .

    \(D=25-4 \cdot 2 \cdot 2=25-16=9\)

    \(t_1=\)\(\frac{5-3}{4}\) \(=\)\(\frac{1}{2}\) ; \(t_2=\)\(\frac{5+3}{4}\) \(=2\)

    Делаем обратную замену.

    \(\cos⁡x=\)\(\frac{1}{2}\); \(\cos⁡x=2\)

    Первое уравнение решаем с помощью числовой окружности.
    Второе уравнение не имеет решений т.к. \(\cos⁡x∈[-1;1]\) и двум быть равен не может ни при каких иксах.

    Запишем все числа, лежащие на в этих точках.

    Ответ: \(x=±\)\(\frac{π}{3}\) \(+2πk\), \(k∈Z\).

    Пример решения тригонометрического уравнения с исследованием ОДЗ:

    Пример(ЕГЭ) . Решите тригонометрическое уравнение \(=0\)

    \(\frac{2\cos^2⁡x-\sin{⁡2x}}{ctg x}\) \(=0\)

    Есть дробь и есть котангенс – значит надо записать . Напомню, что котангенс это фактически дробь:

    ctg\(x=\)\(\frac{\cos⁡x}{\sin⁡x}\)

    Потому ОДЗ для ctg\(x\): \(\sin⁡x≠0\).

    ОДЗ: ctg\(x ≠0\); \(\sin⁡x≠0\)

    \(x≠±\)\(\frac{π}{2}\) \(+2πk\); \(x≠πn\); \(k,n∈Z\)

    Отметим «нерешения» на числовой окружности.

    \(\frac{2\cos^2⁡x-\sin{⁡2x}}{ctg x}\) \(=0\)

    Избавимся в уравнении от знаменателя, умножив его на ctg\(x\). Мы можем это сделать, так как выше написали, что ctg\(x ≠0\).

    \(2\cos^2⁡x-\sin⁡{2x}=0\)

    Применим формулу двойного угла для синуса: \(\sin⁡{2x}=2\sin⁡x\cos⁡x\).

    \(2\cos^2⁡x-2\sin⁡x\cos⁡x=0\)

    Если у вас руки потянулись поделить на косинус – одерните их! Делить на выражение с переменной можно если оно точно не равно нулю (например, такие: \(x^2+1,5^x\)). Вместо этого вынесем \(\cos⁡x\) за скобки.

    \(\cos⁡x (2\cos⁡x-2\sin⁡x)=0\)

    «Расщепим» уравнение на два.

    \(\cos⁡x=0\); \(2\cos⁡x-2\sin⁡x=0\)

    Первое уравнение с решим с помощью числовой окружности. Второе уравнение поделим на \(2\) и перенесем \(\sin⁡x\) в правую часть.

    \(x=±\)\(\frac{π}{2}\) \(+2πk\), \(k∈Z\). \(\cos⁡x=\sin⁡x\)

    Корни, которые получились не входят в ОДЗ. Поэтому их в ответ записывать не будем.
    Второе уравнение типичное . Поделим его на \(\sin⁡x\) (\(\sin⁡x=0\) не может быть решением уравнения т.к. в этом случаи \(\cos⁡x=1\) или \(\cos⁡x=-1\)).

    Опять используем окружность.


    \(x=\)\(\frac{π}{4}\) \(+πn\), \(n∈Z\)

    Эти корни не исключаются ОДЗ, поэтому можно их записывать в ответ.

    Ответ: \(x=\)\(\frac{π}{4}\) \(+πn\), \(n∈Z\).

    На этом уроке мы рассмотрим основные тригонометрические функции, их свойства и графики , а также перечислим основные типы тригонометрических уравнений и систем . Кроме этого, укажем общие решения простейших тригонометрических уравнений и их частные случаи .

    Данный урок поможет Вам подготовиться к одному из типов задания В5 и С1 .

    Подготовка к ЕГЭ по математике

    Эксперимент

    Урок 10. Тригонометрические функции. Тригонометрические уравнения и их системы.

    Теория

    Конспект урока

    Мы с вами уже многократно применяли термин «тригонометрическая функция». Еще на первом уроке этой темы мы определили их с помощью прямоугольного треугольника и единичной тригонометрической окружности. Используя такие способы задания тригонометрических функций, мы уже можем сделать вывод, что для них одному значению аргумента (или угла) соответствует строго одно значение функции, т.е. мы вправе называть синус, косинус, тангенс и котангенс именно функциями.

    На этом уроке самое время попробовать абстрагироваться от рассмотренных ранее способов вычисления значений тригонометрических функций. Сегодня мы перейдем к привычному алгебраическому подходу работы с функциями, мы рассмотрим их свойства и изобразим графики.

    Что касается свойств тригонометрических функций, то особое внимание следует обратить на:

    Область определения и область значений, т.к. для синуса и косинуса есть ограничения по области значений, а для тангенса и котангенса ограничения по области определения;

    Периодичность всех тригонометрических функций, т.к. мы уже отмечали наличие наименьшего ненулевого аргумента, добавление которого не меняет значение функции. Такой аргумент называют периодом функции и обозначают буквой . Для синуса/косинуса и тангенса/котангенса эти периоды различны.

    Рассмотрим функцию:

    1) Область определения ;

    2) Область значений ;

    3) Функция нечетная ;

    Построим график функции . При этом удобно начинать построение с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Кроме того, для построения полезно помнить значения синусов нескольких основных табличных углов, например, что Это позволит построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

    Теперь рассмотрим функцию:

    Основные свойства этой функции:

    1) Область определения ;

    2) Область значений ;

    3) Функция четная Из этого следует симметричность графика функции относительно оси ординат;

    4) Функция не является монотонной на всей своей области определения;

    Построим график функции . Как и при построении синуса удобно начинать с изображения области, которая ограничивает график сверху числом 1 и снизу числом , что связано с областью значений функции. Также нанесем на график координаты нескольких точек, для чего необходимо помнить значения косинусов нескольких основных табличных углов, например, что С помощью этих точек мы можем построить первую полную «волну» графика и потом перерисовывать ее вправо и влево, пользуясь тем, что картинка будет повторяться со смещением на период, т.е. на .

    Перейдем к функции:

    Основные свойства этой функции:

    1) Область определения кроме , где . Мы уже указывали в предыдущих уроках, что не существует. Это утверждение можно обобщить, учитывая период тангенса;

    2) Область значений , т.е. значения тангенса не ограничены;

    3) Функция нечетная ;

    4) Функция монотонно возрастает в пределах своих так называемых веток тангенса, которые мы сейчас увидим на рисунке;

    5) Функция периодична с периодом

    Построим график функции . При этом удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е. и т.д. Далее изображаем ветки тангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. При этом не забываем, что каждая ветка монотонно возрастает. Все ветки изображаем одинаково, т.к. функция имеет период, равный . Это видно по тому, что каждая ветка получается смещением соседней на вдоль оси абсцисс.

    И завершаем рассмотрением функции:

    Основные свойства этой функции:

    1) Область определения кроме , где . По таблице значений тригонометрических функций мы уже знаем, что не существует. Это утверждение можно обобщить, учитывая период котангенса;

    2) Область значений , т.е. значения котангенса не ограничены;

    3) Функция нечетная ;

    4) Функция монотонно убывает в пределах своих веток, которые похожи на ветки тангенса;

    5) Функция периодична с периодом

    Построим график функции . При этом, как и для тангенса, удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е. и т.д. Далее изображаем ветки котангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. В этом случае учитываем, что каждая ветка монотонно убывает. Все ветки аналогично тангенсу изображаем одинаково, т.к. функция имеет период, равный .

    Отдельно следует отметить тот факт, что у тригонометрических функций со сложным аргументом может быть нестандартный период. Речь идет о функциях вида:

    У них период равен . И о функциях:

    У них период равен .

    Как видим, для вычисления нового периода стандартный период просто делится на множитель при аргументе. От остальных видоизменений функции он не зависит.

    Подробнее разобраться и понять, откуда берутся эти формулы, вы сможете в уроке про построение и преобразование графиков функций.

    Мы подошли к одной из самых главных частей темы «Тригонометрия», которую мы посвятим решению тригонометрических уравнений. Умение решать такие уравнения важно, например, при описании колебательных процессов в физике. Представим, что вы на спортивной машине проехали несколько кругов на картинге, определить сколько времени вы уже участвуете в гонке в зависимости от положения машины на трассе поможет решение тригонометрического уравнения.

    Запишем простейшее тригонометрическое уравнение:

    Решением такого уравнения являются аргументы, синус которых равен . Но мы уже знаем, что из-за периодичности синуса таких аргументов существует бесконечное множество. Таким образом, решением этого уравнения будут и т.п. То же самое относится и к решению любого другого простейшего тригонометрического уравнения, их будет бесконечное количество.

    Тригонометрические уравнения делятся на несколько основных типов. Отдельно следует остановиться на простейших, т.к. все остальные к ним сводятся. Таких уравнений четыре (по количеству основных тригонометрических функций). Для них известны общие решения, их необходимо запомнить.

    Простейшие тригонометрические уравнения и их общие решения выглядят следующим образом:

    Обратите внимание, что на значения синуса и косинуса необходимо учитывать известные нам ограничения. Если, например, , то уравнение не имеет решений и применять указанную формулу не следует.

    Кроме того, указанные формулы корней содержат параметр в виде произвольного целого числа . В школьной программе это единственный случай, когда решение уравнения без параметра содержит в себе параметр. Это произвольное целое число показывает, что можно выписать бесконечное количество корней любого из указанных уравнений просто подставляя вместо по очереди все целые числа.

    Ознакомиться с подробным получением указанных формул вы можете, повторив главу «Тригонометрические уравнения» в программе алгебры 10 класса.

    Отдельно необходимо обратить внимание на решение частных случаев простейших уравнений с синусом и косинусом. Эти уравнения имеют вид:

    К ним не следует применять формулы нахождения общих решений. Такие уравнения удобнее всего решаются с использованием тригонометрической окружности, что дает более простой результат, чем формулы общих решений.

    Например, решением уравнения является . Попробуйте сами получить этот ответ и решить остальные указанные уравнения.

    Кроме указанного наиболее часто встречающегося типа тригонометрических уравнений существуют еще несколько стандартных. Перечислим их с учетом тех, которые мы уже указали:

    1) Простейшие , например, ;

    2) Частные случаи простейших уравнений , например, ;

    3) Уравнения со сложным аргументом , например, ;

    4) Уравнения, сводящиеся к простейшим путем вынесения общего множителя , например, ;

    5) Уравнения, сводящиеся к простейшим путем преобразования тригонометрических функций , например, ;

    6) Уравнения, сводящиеся к простейшим с помощью замены , например, ;

    7) Однородные уравнения , например, ;

    8) Уравнения, которые решаются с использованием свойств функций , например, . Пусть вас не пугает, что в этом уравнении две переменные, оно при этом решается;

    А также уравнения, которые решаются с использованием различных методов.

    Кроме решения тригонометрических уравнений необходимо уметь решать и их системы.

    Наиболее часто встречаются системы следующих типов:

    1) В которых одно из уравнений степенное , например, ;

    2) Системы из простейших тригонометрических уравнений , например, .

    На сегодняшнем уроке мы рассмотрели основные тригонометрические функции, их свойства и графики. А также познакомились с общими формулами решения простейших тригонометрических уравнений, указали основные типы таких уравнений и их систем.

    В практической части урока мы разберем методы решения тригонометрических уравнений и их систем.

    Вставка 1. Решение частных случаев простейших тригонометрических уравнений .

    Как мы уже говорили в основной части урока частные случаи тригонометрических уравнений с синусом и косинусом вида:

    имеют более простые решения, чем дают формулы общих решений.

    Для этого используется тригонометрическая окружность. Разберем метод их решения на примере уравнения .

    Изобразим на тригонометрической окружности точку, в которой значение косинуса равно нулю, оно же является координатой по оси абсцисс. Как видим, таких точек две. Наша задача указать чему равен угол, который соответствует этим точкам на окружности.

    Начинаем отсчет от положительного направления оси абсцисс (оси косинусов) и при откладывании угла попадаем в первую изображенную точку, т.е. одним из решений будет это значение угла. Но нас же еще устраивает угол, который соответствует второй точке. Как попасть в нее?

    Глава 15. Тригонометрические уравнения

    15.6. Решение более сложных тригонометрических уравнений

    В предыдущих пунктах 3-5 приведены решения простейших тригонометрических уравнений , , и . К ним посредством тождественных преобразований или решением вспомогательного алгебраического уравнения сводятся более сложные тригонометрические уравнения, содержащие несколько тригонометрических функций одинаковых или различных аргументов.

    Общий прием решения таких уравнений состоит в замене всех входящих в уравнение тригонометрических функций через одну функцию на основании формул, связывающих эти функции. При решении уравнения стремимся делать такие преобразования, которые приводят к уравнениям, равносильным данному. В противном случае нужно сделать проверку полученных корней.

    Потеря корней является распространенной грубой ошибкой. Другими такими ошибками являются неточное знание формул решений простейших уравнений, а также неумение правильно найти нужное значение аркфункции.

    Рассмотрим примеры.

    Решить уравнение .

    Пример 2. (пример на приведение к одному аргументу).

    Решить уравнение .

    Решение:
    Целесообразно перейти к аргументу . Произведение напоминает о формуле синуса двойного аргумента: .
    Подставив в уравнение, получим: .
    В левой части еще раз применим формулу синуса двойного аргумента, но сначала умножим обе части уравнения на .
    ; ; .
    Получили простейшее уравнение типа и весь аргумент приравняем решению простейшего уравнения:
    , откуда .

    Решить уравнение .

    Решение:
    По одной из формул понижения степени получим .

    После подстановки в уравнение имеем

    Решите уравнение .

    Решение:
    Перенося в правую часть, получим , что равно :
    ; ; .
    Здесь пришлось идти путем повышения степени уравнения, зато мы получили возможность применить хороший прием решения - перенести все члены в одну часть и разложить полученное выражение на множители:
    .
    Приравнивая нулю каждый множитель отдельно, получим совокупность уравнений,

    которая, как правило, равносильна данному уравнению (исключение из этого правила рассмотрено в следующем примере).
    Решаем уравнение , имеем
    , и .
    Решаем уравнение или , имеем , и .

    Решить уравнение .

    Включение в ответ постороннего корня считается грубой ошибкой. Чтобы избежать ее, надо убедиться, что полученные корни не обращают в нуль ни одну из функций, находящихся в знаменателе дроби данного уравнения (если там есть дроби) и что при этих корнях не теряет смысла ни одна из функций , в первоначальном уравнении (если они туда входят). Следует помнить, при каких значениях аргумента функция обращается в нуль и область определения каждой тригонометрической функции.По аналогии говорят об области определения уравнения (области допустимых значений, или ОДЗ, неизвестного). Область определения тригонометрического уравнения - общая часть (пересечение) областей определения левой и правой частей данного уравнения. Если полученный корень не принадлежит области определения уравнения, то он посторонний и его нужно отбросить.

    Решить уравнение
    .

    Решение:
    Перейдем к одной функции. Если выразить через , то получим иррациональное уравнение, что нежелательно. Заменим через :
    ; .
    Решим полученное уравнение как квадратное относительно .
    или .
    Уравнение не имеет корней.
    Для уравнения имеем:
    . Но и означают одни и те же нечетные числа, поэтому решение запишем проще: .

    Решить уравнение
    .

    Для получения однородного уравнения (все члены одной и той же степени - второй) умножим правую часть на выражение , которое равно .
    ;
    .
    Так как корни уравнения не являются корнями исходного уравнения (в этом легко убедиться подстановкой), то, чтобы перейти к одной функции, разделим обе части уравнения на .

    Решаем квадратное уравнение относительно .
    или .
    Для уравнения имеем: .
    Для уравнения получим .

    Решить уравнение .

    Выразим через и , получим
    . Здесь должен быть отличен от нуля (в противном случае уравнение теряет смысл), поэтому область определениения уравнения составляют все . Так как , то умножим обе части уравнения на , чтобы освободиться от дробей.
    ;
    ;
    .
    Для уравнения имеем