Примеры окислительно-восстановительных реакций с решением. ОВР: схемы

Задачник по общей и неорганической химии

2.2. Окислительно-восстановительные реакции

Смотрите задания >>>

Теоретическая часть

К окислительно-восстановительным реакциям относятся химические реакции, которые сопровождаются изменением степеней окисления элементов. В уравнениях таких реакций подбор коэффициентов проводят составлением электронного баланса . Метод подбора коэффициентов с помощью электронного баланса складывается из следующих этапов:

а) записывают формулы реагентов и продуктов, а затем находят элементы, которые повышают и понижают свои степени окисления, и выписывают их отдельно:

MnCO 3 + KClO 3 ® MnO 2 + KCl + CO 2

Cl V ¼ = Cl - I

Mn II ¼ = Mn IV

б) составляют уравнения полуреакций восстановления и окисления, соблюдая законы сохранения числа атомов и заряда в каждой полуреакции :

полуреакция восстановления Cl V + 6 e - = Cl - I

полуреакция окисления Mn II - 2 e - = Mn IV

в) подбирают дополнительные множители для уравнения полуреакций так, чтобы закон сохранения заряда выполнялся для реакции в целом, для чего число принятых электронов в полуреакциях восстановления делают равным числу отданных электронов в полуреакции окисления:

Cl V + 6 e - = Cl - I 1

Mn II - 2 e - = Mn IV 3

г) проставляют (по найденным множителям) стехиометрические коэффициенты в схему реакции (коэффициент 1 опускается):

3 MnCO 3 + KClO 3 = 3 MnO 2 + KCl + CO 2

д ) уравнивают числа атомов тех элементов, которые не изменяют своей степени окисления при протекании реакции (если таких элементов два, то достаточно уравнять число атомов одного из них, а по второму провести проверку). Получают уравнение химической реакции:

3 MnCO 3 + KClO 3 = 3 MnO 2 + KCl + 3 CO 2

Пример 3 . Подберите коэффициенты в уравнении окислительно-восстановительной реакции

Fe 2 O 3 + CO ® Fe + CO 2

Решение

Fe 2 O 3 + 3 CO = 2 Fe +3 CO 2

Fe III + 3 e - = Fe 0 2

C II - 2 e - = C IV 3

При одновременном окислении (или восстановлении) атомов двух элементов одного вещества расчет ведут на одну формульную единицу этого вещества.

Пример 4. Подберите коэффициенты в уравнении окислительно-восстановительной реакции

Fe(S) 2 + O 2 = Fe 2 O 3 + SO 2

Решение

4 Fe(S) 2 + 11 O 2 = 2 Fe 2 O 3 + 8 SO 2

Fe II - e - = Fe III

- 11 e - 4

2S - I - 10 e - = 2S IV

O 2 0 + 4 e - = 2O - II + 4 e - 11

В примерах 3 и 4 функции окислителя и восстановителя разделены между разными веществами, Fe 2 O 3 и O 2 - окислители, СО и Fe (S ) 2 - восстановители ; такие реакции относят к межмолекулярным окислительно-восстановительным реакциям.

В случае внутримолекулярного окисления-восстановления, когда в одном и том же веществе атомы одного элемента окисляются, а атомы другого элемента восстанавливаются, расчет ведут на одну формульную единицу вещества.

Пример 5. Подберите коэффициенты в уравнении реакции окисления-восстановления

(NH 4) 2 CrO 4 ® Cr 2 O 3 + N 2 +H 2 O + NH 3

Решение

2 (NH 4) 2 CrO 4 = Cr 2 O 3 + N 2 +5 H 2 O + 2 NH 3

Cr VI + 3 e - = Cr III 2

2N - III - 6 e - = N 2 0 1

Для реакций дисмутации (диспропорционирования , самоокисления - самовосстановления), в которых атомы одного и того же элемента в реагенте окисляются и восстанавливаются, дополнительные множители проставляют вначале в правую часть уравнения, а затем находят коэффициент для реагента.

Пример 6 . Подберите коэффициенты в уравнении реакции дисмутации

H 2 O 2 ® H 2 O + O 2

Решение

2 H 2 O 2 = 2 H 2 O + O 2

O - I + e - = O - II 2

2O - I - 2 e - = O 2 0 1

Для реакции конмутации (синпропорционирования ), в которых атомы одного и того же элемента разных реагентов в результате их окисления и восстановления получают одинаковую степень окисления, дополнительные множители проставляют вначале в левую часть уравнения.

Пример 7. Подберите коэффициенты в уравнении реакции конмутации :

H 2 S + SO 2 = S + H 2 O

Решение

2 H 2 S + SO 2 = 3 S + 2H 2 O

S - II - 2 e - = S 0 2

S IV + 4 e - = S 0 1

Для подбора коэффициентов в уравнениях окислительно-восстановительных реакций, протекающих в водном растворе при участии ио нов, используют метод электронно-ионного баланса. Метод подбора коэффициентов с помощью электронно-ионного баланса складывается из следующих этапов:

а) записывают формулы реагентов данной окислительно-восстановительной реакции

K 2 Cr 2 O 7 + H 2 SO 4 + H 2 S

и устанавливают химическую функцию каждого из них (здесь K 2 Cr 2 O 7 - окислитель, H 2 SO 4 - кислотная среда реакции, H 2 S - восстановитель);

б) записывают (на следующей строчке) формулы реагентов в ионном виде, указывая только те ионы (для сильных электролитов), молекулы (для слабых электролитов и газов) и формульные единицы (для твердых веществ), которые примут участие в реакции в качестве окислителя (Cr 2 O 7 2 - ), среды (Н + - точнее, катиона оксония H 3 O + ) и восстановителя (H 2 S ):

Cr 2 O 7 2 - + H + + H 2 S

в) определяют восстановленную формулу окислителя и окисленную форму восстановителя, что должно быть известно или задано (так, здесь дихромат-ион переходит катионы хрома(III ), а сероводород - в серу); эти данные записывают на следующих двух строчках, составляют электронно-ионные уравнения полуреакций восстановления и окисления и подбирают дополнительные множители для уравнений полуреакций :

полуреакция восстановления Cr 2 O 7 2 - + 14 H + + 6 e - = 2 Cr 3+ + 7 H 2 O 1

полуреакция окисления H 2 S - 2 e - = S (т) + 2 H + 3

г) составляют, суммируя уравнения полуреакций , ионное уравнение данной реакции, т.е. дополняют запись (б):

Cr 2 O 7 2 - + 8 H + + 3 H 2 S = 2 Cr 3+ + 7 H 2 O + 3 S ( т )

д ) на основе ионного уравнения составляют молекулярное уравнение данной реакции, т.е. дополняют запись (а), причем формулы катионов и анионов, отсутствующие в ионном уравнении, группируют в формулы дополнительных продуктов (K 2 SO 4 ):

K 2 Cr 2 O 7 + 4H 2 SO 4 + 3H 2 S = Cr 2 (SO 4) 3 + 7H 2 O + 3S ( т ) + K 2 SO 4

е) проводят проверку подобранных коэффициентов по числу атомов элементов в левой и правой частях уравнения (обычно достаточно только проверить число атомов кислорода).

Окисленная и восстановленная формы окислителя и восстановителя часто отличаются по содержанию кислорода (сравните Cr 2 O 7 2 - и Cr 3+ ). Поэтому при составлении уравнений полуреакций методом электронно-ионного баланса в них включают пары Н + / Н 2 О (для кислотной среды) и ОН - / Н 2 О (для щелочной среды). Если при переходе от одной формы к другой исходная форма (обычно - окисленная) теряет свои оксид-ионы (ниже показаны в квадратных скобках), то последние, так как они не существуют в свободном виде, должны быть в кислотной среде соединены с катионами водорода, а в щелочной среде - с молекулами воды, что приводит к образованию молекул воды (в кислотной среде) и гидроксид-ионов (в щелочной среде ):

кислотная среда[ O 2 - ] + 2 H + = H 2 O

щелочная среда[ O 2 - ] + H 2 О = 2 ОН -

Недостаток оксид-ионов в исходной форме (чаще - в восстановленной) по сравнению с конечной формой компенсируется добавлением молекул воды (в кислотной среде) или гидроксид-ионов (в щелочной среде):

кислотная среда H 2 O = [ O 2 - ] + 2 H +

щелочная среда2 ОН - = [ O 2 - ] + H 2 О

Пример 8. Подберите коэффициенты методом электронно-ионного баланса в уравнении окислительно-восстановительной реакции:

® MnSO 4 + H 2 O + Na 2 SO 4 + ¼

Решение

2 KMnO 4 + 3 H 2 SO 4 + 5 Na 2 SO 3 =

2 MnSO 4 + 3 H 2 O + 5 Na 2 SO 4 + + K 2 SO 4

2 MnO 4 - + 6 H + + 5 SO 3 2 - = 2 Mn 2+ + 3 H 2 O + 5 SO 4 2 -

MnO 4 - + 8 H + + 5 e - = Mn 2+ + 4 H 2 O2

SO 3 2 - + H 2 O - 2 e - = SO 4 2 - + 2 H + 5

Пример 9 . Подберите коэффициенты методом электронно-ионного баланса в уравнении окислительно-восстановительной реакции:

Na 2 SO 3 + KOH + KMnO 4 ® Na 2 SO 4 + H 2 O + K 2 MnO 4

Решение

Na 2 SO 3 + 2 KOH + 2 KMnO 4 = Na 2 SO 4 + H 2 O + 2 K 2 MnO 4

SO 3 2 - + 2 OH - + 2 MnO 4 - = SO 4 2 - + H 2 O + 2 MnO 4 2 -

MnO 4 - + 1 e - = MnO 4 2 - 2

SO 3 2 - + 2 OH - - 2 e - = SO 4 2 - + H 2 О 1

Если перманганат-ион используется в качестве окислителя в слабокислотной среде, то уравнение полуреакции восстановления:

MnO 4 - + 4 H + + 3 e - = Mn О 2( т ) + 2 H 2 O

а если в слабощелочной среде, то

MnO 4 - + 2 H 2 О + 3 e - = Mn О 2( т) + 4 ОН -

Часто слабокислую и слабощелочную среду условно называют нейтральной, при этом в уравнения полуреакций слева вводят только молекулы воды. В этом случае при составлении уравнения следует (после подбора дополнительных множителей) записать дополнительное уравнение, отражающее образование воды из ионов Н + и ОН - .

Пример 10 . Подберите коэффициенты в уравнении реакции, протекающей в нейтральной среде:

KMnO 4 + H 2 О + Na 2 SO 3 ® Mn О 2( т ) + Na 2 SO 4 ¼

Решение

2 KMnO 4 + H 2 О + 3 Na 2 SO 3 = 2 Mn О 2( т ) + 3 Na 2 SO 4 + 2 КОН

MnO 4 - + H 2 О + 3 SO 3 2 - = 2 Mn О 2( т ) + 3 SO 4 2 - + 2 ОН -

MnO 4 - + 2 H 2 О + 3 e - = Mn О 2( т) + 4 ОН -

SO 3 2 - + H 2 O - 2 e - = SO 4 2 - + 2 H +

8ОН - + 6 Н + = 6 Н 2 О + 2 ОН -

Таким образом, если реакцию из примера 10 проводят простым сливанием водных растворов перманганата калия и сульфита натрия, то она протекает в условно нейтральной (а в действительности, в слабощелочной) среде из-за образования гидроксида калия. Если же раствор перманганата калия немного подкислить, то реакция будет протекать в слабокислотной (условно нейтральной) среде.

Пример 11 . Подберите коэффициенты в уравнении реакции, протекающей в слабокислотной среде:

KMnO 4 + H 2 SO 4 + Na 2 SO 3 ® Mn О 2( т ) + H 2 O + Na 2 SO 4 + ¼

Решение

2KMnO 4 + H 2 SO 4 + 3Na 2 SO 3 = 2MnО 2( т ) + H 2 O + 3Na 2 SO 4 + K 2 SO 4

2 MnO 4 - + 2 H + + 3 SO 3 2 - = 2 Mn О 2( т ) + Н 2 О + 3 SO 4 2 -

MnO 4 - + 4 H + + 3 e - = Mn О 2( т ) + 2 H 2 O2

SO 3 2 - + H 2 O - 2 e - = SO 4 2 - + 2 H + 3

Формы существования окислителей и восстановителей до и после реакции, т.е. их окисленные и восстановленные формы, называют окислительно-восстановительными парами . Так, из химической практики известно (и это требуется запомнить), что перманганат-ион в кислотной среде образует катион марганца(II ) (пара MnO 4 - + H + / Mn 2+ + H 2 O ), в слабощелочной среде - оксид марганца(IV ) (пара MnO 4 - + H + ¤ Mn О 2(т) + H 2 O или MnO 4 - + H 2 О = Mn О 2(т) + ОН - ). Состав окисленных и восстановленных форм определяется, следовательно, химическими свойствами данного элемента в различных степенях окисления, т.е. неодинаковой устойчивостью конкретных форм в различных средах водного раствора. Все использованные в настоящем разделе окислительно-восстановительные пары приведены в задачах 2.15 и 2.16.

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Сибирский государственный индустриальный университет»

Кафедра общей и аналитической химии

Окислительно-восстановительные реакции

Методические указания для выполнения лабораторных и практических занятий

по дисциплинам «Химия», «Неорганическая химия»,

«Общая и неорганическая химия»

Новокузнецк

УДК 544.3(07)

Рецензент

кандидат химических наук, доцент,

зав. кафедрой физхимии и ТМП СибГИУ

А.И. Пошевнева

О-504 Окислительно-восстановительные реакции: метод. указ. / Сиб. гос. индустр. ун-т; сост. : П.Г. Пермяков, Р.М. Белкина, С.В. Зенцова. – Новокузнецк: Изд. центр СибГИУ 2012. – 41 с.

Приведены теоретические сведения, примеры решения задач по теме «Окислительно-восстановительные реакции» по дисциплинам «Химия», «Неорганическая химия», «Общая и неорганическая химия». Представлены лабораторные работы и разработанные авторским коллективом вопросы для самоконтроля, контрольные и тестовые задания для выполнения контрольной и самостоятельной работы.

Предназначено для студентов первого курса всех направлений подготовки.

Предисловие

Методические указания по химии составлены согласно программе для технических направлений высших учебных заведений, предназначены для организации самостоятельной работы по теме «Окислительно-восстановительные реакции» над учебным материалом в аудиторное и неаудиторное время.

Самостоятельная работа при изучении темы «Окислительно-восстановительные реакции» состоит из нескольких элементов: изучение теоретического материала, выполнение контрольных и тестовых заданий по данному методическому указанию и индивидуальные консультации с преподавателем.

В результате самостоятельной работы необходимо освоить основные термины, определения, понятия и овладеть техникой химических расчетов. К выполнению контрольных и тестовых заданий следует приступать только после глубокого изучения теоретического материала и тщательного разбора примеров типовых заданий, приведенных в теоретическом разделе.

Авторы надеются, что методические указания позволят студентам не только успешно освоить предложенный материал по теме «Окислительно-восстановительные реакции», но и станут для них полезными в учебном процессе при освоении дисциплин «Химия», «Неорганическая химия».

Окислительно-восстановительные реакции Термины, определения, понятия

Окислительно-восстановительные реакции – это реакции, сопровождающиеся переходом электронов от одних атомов или ионов к другим, другими словами – это реакции, в результате которых изменяются степени окисления элементов.

Степень окисления – это заряд атома элемента в соединении, вычисленный из условного предположения, что все связи в молекуле являются ионными.

Степень окисления принято указывать арабской цифрой над символом элемента со знаком плюс или минус перед цифрой. Например, если связь в молекуле HCl ионная, то водород и хлор ионы с зарядами (+1) и (–1), следовательно
.


Используя выше указанные правила, рассчитаем степени окисления хрома в K 2 Cr 2 O 7 , хлора в NaClO, серы в H 2 SO 4 , азота в NH 4 NO 2:

2(+1) + 2·х + 7(–2) = 0, х = +6;

+1 + х + (–2) = 0, х = +1;

2(+1) + х + 4(–2) = 0, х = +6;

х+4(+1)=+1, у + 2(–2) = –1,

х = –3, у = +3.

Окисление и восстановление. Окислением называется отдача электронов, в результате чего степень окисления элемента повышается. Восстановлением называется присоединение электронов, в результате чего степень окисления элемента понижается.

Окислительные и восстановительные процессы тесно связаны между собой, так как химическая система только тогда может отдавать электроны, когда другая система их присоединяет (окислительно-восстановительная система ). Присоединяющая электроны система (окислитель ) сама восстанавливается (превращается в соответствующий восстановитель), а отдающая электроны система (восстановитель ), сама окисляется (превращается в соответствующий окислитель).

Пример 1. Рассмотрим реакцию:

Число электронов, отдаваемых атомами восстановителя (калия), равно числу электронов, присоединяемых молекулами окислителя (хлора). Поэтому одна молекула хлора может окислить два атома калия. Уравнивая число принятых и отданных электронов, получаем:

К типичным окислителям относят:

    Элементарные вещества – Cl 2 , Br 2 , F 2 , I 2 , O, O 2 .

    Соединения, в которых элементы проявляют высшую степень окисления (определяется номером группы) –

    Катион Н + и ионы металлов в их высшей степени окисления – Sn 4+ , Cu 2+ , Fe 3+ и т. д.

К типичным восстановителям относят:

Окислительно-восстановительная двойственность. Соединения высшей степени окисления , присущей данному элементу, могут в окислительно-восстановительных реакциях выступать только в качестве окислителей, степень окисления элемента может в этом случае только понижаться. Соединения низшей степени окисления могут быть, наоборот, только восстановителями; здесь степень окисления элемента может только повышаться. Если же элемент находится в промежуточной степени окисления, то его атомы могут, в зависимости от условий, принимать электроны, выступая в качестве окислителя или отдавать электроны, выступая в качестве восстановителя.

Так, например, степень окисления азота в соединениях изменяется в пределах от (– 3) до (+5) (рисунок 1):

NH 3 , NH 4 OH только

восстановители

HNO 3 , соли HNO 3

только окислители

Соединения с промежуточными степенями окисления азота могут выступать в качестве окислителей, восстанавливаясь до низших степеней окисления, или в качестве восстановителей, окисляясь до высших степеней окисления

Рисунок 1 – Изменение степени окисления азота

Метод электронного баланса уравнивания окислительно-восстановительных реакций заключается в выполнении следующего правила: число электронов, отданных всеми частицами восстановителей, всегда равно числу электронов, присоединенных всеми частицами окислителей в данной реакции.

Пример 2. Проиллюстрируем метод электронного баланса на примере окисления железа кислородом:
.

Fe 0 – 3ē = Fe +3 – процесс окисления;

O 2 + 4ē = 2O –2 – процесс восстановления.

В системе восстановителя (полуреакция процесса окисления) атом железа отдает 3 электрона (Приложение А).

В системе окислителя (полуреакция процесса восстановления) каждый атом кислорода принимает по 2 электрона – в сумме 4 электрона.

Наименьшее общее кратное двух чисел 3 и 4 равно 12. Отсюда железо отдает 12 электронов, а кислород принимает 12 электронов:

Коэффициенты 4 и 3, записанные левее полуреакций в процессе суммирования систем, умножаются на все компоненты полуреакций. Суммарное уравнение показывает, сколько молекул или ионов должно получиться в уравнении. Уравнение составлено верно, когда число атомов каждого элемента в обеих частях уравнения одинаково.

Метод полуреакций применяется для уравнивания реакций, протекающих в растворах электролитов. В таких случаях в реакциях принимают участие не только окислитель и восстановитель, но и частицы среды: молекулы воды (Н 2 О), Н + и ОН – – ионы. Более правильным для таких реакций является применение электронно-ионных систем (полуреакций). При составлении полуреакций в водных растворах вводят, при необходимости, молекулы Н 2 О и ионы Н + или ОН – , учитывая среду протекания реакции. Слабые электролиты, малорастворимые (Приложение Б) и газообразные соединения в ионных системах записываются в молекулярной форме (Приложение В).

Рассмотрим в качестве примеров взаимодействия сульфата калия и перманганата калия в кислой и щелочной среде.

Пример 3. Взаимодействие сульфата калия и перманганата калия в кислой среде :

Определим изменение степени окисления элементов и указываем их в уравнении. Высшая степень окисления марганца (+7) в KMnO 4 указывает, что KMnO 4 – окислитель. Сера в соединении K 2 SO 3 имеет степень окисления (+4) – это восстановленная форма по отношению к сере (+6) в соединении K 2 SO 4 . Таким образом, K 2 SO 3 – восстановитель. Реальные ионы, в которых находятся элементы изменяющие степень окисления и их исходные полуреакции принимают следующий вид:

Цель дальнейших действий заключатся в том, чтобы в данных полуреакциях вместо стрелок, отражающих возможное направление реакции, поставить знаки равенства. Это можно будет сделать тогда, когда в левой и правой частях каждой полуреакции будут совпадать виды элементов, число их атомов и суммарные заряды всех частиц. Чтобы добиться этого, используют дополнительные ионы или молекулы среды. Обычно это ионы Н + , ОН – и молекулы воды. В полуреакции
число атомов марганца одинаково, однако не равно число атомов кислорода, поэтому в правую часть полуреакции вводим четыре молекулы воды: . Проведя аналогичные действия (уравнивая кислород) в системе
, получаем
. В обеих полуреакциях появились атомы водорода. Их число уравнивают соответствующим добавлением в другой части уравнений эквивалентным числом ионов водорода.

Теперь уравнены все элементы, входящие в уравнения полуреакций. Осталось уравнять заряды частиц. В правой части первой полуреакции сумма всех зарядов равна +2, в то время как слева заряд +7. Равенство зарядов осуществляется добавлением в левой части уравнения пяти отрицательных зарядов в виде электронов (+5 ē). Аналогично, в уравнении второй полуреакции необходимо вычесть слева 2 ē. Теперь можно поставить знаки равенства в уравнениях обеих полуреакций:

–процесс восстановления;

–процесс окисления.

В рассматриваемом примере отношение числа электронов, принимаемых в процессе восстановления, к числу электронов, высвобождающихся при окислении, равно 5 ׃ 2. Для получения суммарного уравнения реакции надо, суммируя уравнения процессов восстановления и окисления, учесть это соотношение – умножить уравнение восстановления на 2, а уравнение окисления – на 5.

Умножая коэффициенты на все члены уравнений полуреакций и суммируя между собой только правые и только левые их части, получаем окончательное уравнение реакции в ионно-молекулярной форме:

Сокращая подобные члены, методом вычитания одинакового количества ионов Н + и молекул Н 2 О, получаем:

Суммарное ионное уравнение записано правильно, есть соответствие среды с молекулярным. Полученные коэффициенты переносим в молекулярное уравнение:

Пример 4. Взаимодействия сульфата калия и перманганата калия в щелочной среде :

Определяем степени окисления элементов, изменяющих степень окисления (Mn +7 → Mn +6 , S +4 → S +6). Реальные ионы, куда входят данные элементы (
,
). Процессы (полуреакции) окисления и восстановления:

2
– процесс восстановления

1 – процесс окисления

Суммарное уравнение:

В суммарном ионном уравнении есть соответствие среды. Переносим коэффициенты в молекулярное уравнение:

Реакции окисления-восстановления делятся на следующие типы:

    межмолекулярного окисления-восстановления;

    самоокисления-самовосстановления (диспропорционирования);

    внутримолекулярного окисления – восстановления.

Реакции межмолекулярного окисления-восстановления – это реакции, когда окислитель находится в одной молекуле, а восстановитель – в другой.

Пример 5. При окислении гидроксида железа во влажной среде происходит следующая реакция:

4Fe(OH) 2 + OH – – 1ē = Fe(OH) 3 – процесс окисления;

1 О 2 + 2Н 2 О + 4ē = 4OH – – процесс восстановления.

Для того чтобы убедиться в правильности записи электронно-ионных систем необходимо произвести проверку: левая и правая части полуреакций должны содержать одинаковое количество атомов элементов и зарядность. Затем, уравнивая количество принятых и отданных электронов, суммируем полуреакции:

4Fe(OH) 2 + 4OH – + O 2 +2H 2 O = 4Fe(OH) 3 + 4OH –

4Fe(OH) 2 + O 2 +2H 2 O = 4Fe(OH) 3

Реакции самоокисления-самовосстановления (реакции диспропорционирования) – это реакции, в ходе которых часть общего количества элемента окисляется, а другая часть – восстанавливается, характерно для элементов, имеющих промежуточную степень окисления.

Пример 6. При взаимодействии хлора с водой получается смесь соляной и хлорноватистой (НСlО) кислот:

Здесь и окисление и восстановление претерпевает хлор:

1Cl 2 + 2H 2 O – 2ē = 2HClO +2H + – процесс окисления;

1 Cl 2 + 2ē = 2Cl – – процесс восстановления.

2Cl 2 + 2H 2 O = 2HClO + 2HCl

Пример 7 . Диспропорционирование азотистой кислоты:


В данном случае окисление и восстановление претерпевает в составеHNO 2:

Суммарное уравнение:

HNO 2 + 2HNO 2 + H 2 O + 2H + = NO + 3H + + 2NO + 2H 2 O

3HNO 2 = HNO 3 + 2NO + H 2 O

Реакции внутримолекулярного окисления-восстановления – это процесс, когда одна составная часть молекулы служит окислителем, а другая – восстановителем. Примерами внутримолекулярного окисления-восстановления могут быть многие процессы термической диссоциации.

Пример 8. Термическая диссоциация NH 4 NO 2:

Здесь ион NH окисляется, а ион NO восстанавливается до свободного азота:

12NH– 6 ē = N 2 + 8H +

1 2NО + 8Н + + 6 ē = N 2 + 4H 2 O

2NH+ 2NO+ 8H + = N 2 + 8H + + N 2 + 4H 2 O

2NH 4 NO 2 = 2N 2 + 4H 2 O

Пример 9 . Реакция разложения бихромата аммония:

12NH– 6 ē = N 2 + 8H +

1 Сr 2 О + 8Н + + 6 ē = Cr 2 O 3 + 4H 2 O

2NH + Сr 2 О + 8H + = N 2 + 8H + + Cr 2 O 3 + 4H 2 O

(NH 4) 2 Сr 2 О 7 = N 2 + Cr 2 O 3 + 4H 2 O

Окислительно-восстановительные реакции с участием более двух элементов изменяющих степень окисления.

Пример 10. Примером служит реакция взаимодействия сульфида железа с азотной кислотой, где в ходе реакции три элемента (Fe, S, N) изменяют степень окисления:

FeS 2 + HNO 3
Fe 2 (SO 4) 3 + NO + …

Уравнение записано не до конца и использование электронно-ионных систем (полуреакций) позволит закончить уравнение. Рассматривая степени окисления участвующих в реакции элементов, определяем, что в FeS 2 два элемента (Fe, S) окисляются, а окислителем является
(), который восстанавливается до NO:

S –1 → ()

Записываем полуреакцию окисления FeS 2:

FeS 2 → Fe 3+ +

Наличие двух ионов Fe 3+ в Fe 2 (SO 4) 3 предполагает удвоения числа атомов железа при дальнейшей записи полуреакции:

2FeS 2 → 2Fe 3+ + 4

Одновременно уравниваем число атомов серы и кислорода, получаем:

2FeS 2 + 16Н 2 O → 2Fe 3+ + 4
.

32 атома водорода, введением в левую часть уравнения в составе 16 молекул Н 2 О уравниваем добавлением эквивалентного числа ионов водорода (32 Н +) в правую часть уравнения:

2FeS 2 + 16Н 2 O → 2Fe 3+ + 4
+ 32Н +

Зарядность правой части уравнения +30. Для того чтобы в левой части было тоже самое (+30) необходимо вычесть 30 ē:

1 2FeS 2 + 16Н 2 O – 30 ē = 2Fe 3+ + 4
+ 32Н + – окисление;

10 NО + 4Н + + 3 ē = NО + 2H 2 O – восстановление.

2FeS 2 +16Н 2 O+10NО+40Н + = 2Fe 3+ + 4
+ 32Н + + 10NО + 20H 2 O

2FeS 2 +10НNО 3 + 30Н + = Fe 2 (SO 4) 3 + 10NО +
+ 32Н + + 4H 2 O

Н 2 SO 4 +30Н +

Сокращаем обе части уравнения на одинаковое число ионов (30 Н +) методом вычитания и получаем:

2FeS 2 +10НNО 3 = Fe 2 (SO 4) 3 + 10NО + Н 2 SO 4 + 4H 2 O

Энергетика окислительно-восстановительных реакций . Условием самопроизвольного протекания любого процесса, в том числе и окислительно-восстановительной реакции является неравенство ∆G < 0, где ∆G – энергия Гиббса и чем меньше ∆G, т.е. чем больше его отрицательное значение, тем более реакционноспособнее окислительно-восстановительная система. Для реакций окисления-восстановления:

∆G = –n·F·ε,

где n – число электронов, передаваемое восстановителем окислителю в элементарном акте окисления-восстановления;

F – число Фарадея;

ε – электродвижущая сила (Э.Д.С.) окислительно-восстановительной реакции.

Электродвижущая сила окислительно-восстановительной реакции определяется разностью потенциалов окислителя и восстановителя:

ε = Е ок – Е в,

В стандартных условиях:

ε ° = Е ° ок – Е ° в.

Итак, если условием самопроизвольного протекания процесса является неравенство ∆G ° < 0, то это возможно, когда n·F·ε ° > 0. Если n и F числа положительные, то необходимо, чтобы ε ° > 0, а это возможно, когда Е ° ок > Е ° в. Отсюда следует, что условием самопроизвольного протекания окислительно-восстановительной реакции является неравенство Е ° ок > Е ° в.

Пример 11. Определите возможность протекания окислительно-восстановительной реакции:

Определив степени окисления элементов, изменяющих степень окисления, запишем полуреакции окислителя и восстановителя с указанием их потенциалов:

Сu – 2ē = Сu 2+ Е ° в = +0,34 В

2Н + + 2ē = Н 2 Е ° ок = 0,0 В

Из полуреакций видно, что Е ° ок < Е ° в, это говорит о том, что рассматриваемый процесс термодинамически невозможен (∆G ° > 0). Данная реакция возможна только в обратном направлении, для которого ∆G ° < 0.

Пример 12. Рассчитайте энергию Гиббса и константу равновесия реакции восстановления перманганата калия сульфатом железа (II).

Полуреакции окислителя и восстановителя:

2 Е ° ок = +1,52В

5 2Fe 2+ – 2 ē = 2Fe 3+ Е ° в = +0,77 В

∆G ° = –n·F·ε ° = –n·F(Е ° ок – Е ° в),

где n = 10, так как восстановитель отдает 10 ē, окислитель принимает 10 ē в элементарном акте окисления-восстановления.

∆G ° = –10·69500(1,52–0,77) = –725000 Дж,

∆G ° = –725 кДж.

Учитывая, что стандартное изменение энергии Гиббса связано с ее константой равновесия (К с) соотношением:

∆G ° = –RTlnК с или n·F·ε = RTlnК с,

где R = 8,31 Дж·моль –1 ·К –1 ,

F
96500 Кл·моль –1 , Т = 298 К.

Определяем константу равновесия для данной реакции, проставив в уравнении постоянные величины, переведя натуральный логарифм в десятичный:

К с = 10 127 .

Полученные данные говорят о том, что рассматриваемая реакция восстановления перманганата калия реакционноспособна (∆G ° = – 725 кДж), процесс протекает слева направо и практически необратима (К с = 10 127).

Задание №1

Si + HNO 3 + HF → H 2 SiF 6 + NO + …

N +5 + 3e → N +2 │4 реакция восстановления

Si 0 − 4e → Si +4 │3 реакция окисления

N +5 (HNO 3) – окислитель, Si – восстановитель

3Si + 4HNO 3 + 18HF → 3H 2 SiF 6 + 4NO +8H 2 O

Задание №2

Используя метод электронного баланса, составьте уравнение реакции:

B+ HNO 3 + HF → HBF 4 + NO 2 + …

Определите окислитель и восстановитель.

N +5 + 1e → N +4 │3 реакция восстановления

B 0 -3e → B +3 │1 реакция окисления

N +5 (HNO 3) – окислитель, B 0 – восстановитель

B+ 3HNO 3 + 4HF → HBF 4 + 3NO 2 + 3H 2 O

Задание №3

Используя метод электронного баланса, составьте уравнение реакции:

K 2 Cr 2 O 7 + HCl → Cl 2 + KCl + … + …

Определите окислитель и восстановитель.

2Cl -1 -2e → Cl 2 0 │3 реакция окисления

Cr +6 (K 2 Cr 2 O 7) – окислитель, Cl -1 (HCl) – восстановитель

K 2 Cr 2 O 7 + 14HCl → 3Cl 2 + 2KCl + 2CrCl 3 + 7H 2 O

Задание №4

Используя метод электронного баланса, составьте уравнение реакции:

Cr 2 (SO 4) 3 + … + NaOH → Na 2 CrO 4 + NaBr + … + H 2 O

Определите окислитель и восстановитель.

Br 2 0 + 2e → 2Br -1 │3 реакция восстановления

2Cr +3 - 6e → 2Cr +6 │1 реакция окисления

Br 2 – окислитель, Cr +3 (Cr 2 (SO 4) 3) – восстановитель

Cr 2 (SO 4) 3 + 3Br 2 + 16NaOH → 2Na 2 CrO 4 + 6NaBr + 3Na 2 SO 4 + 8H 2 O

Задание №5

Используя метод электронного баланса, составьте уравнение реакции:

K 2 Cr 2 O 7 + … + H 2 SO 4 → l 2 + Cr 2 (SO 4) 3 + … + H 2 O

Определите окислитель и восстановитель.

2Cr +6 + 6e → 2Cr +3 │1 реакция восстановления

2I -1 -2e → l 2 0 │3 реакция окисления

Cr +6 (K 2 Cr 2 O 7) – окислитель, l -1 (Hl) – восстановитель

K 2 Cr 2 O 7 + 6HI + 4H 2 SO 4 → 3l 2 + Cr 2 (SO 4) 3 + K 2 SO 4 + 7H 2 O

Задание №6

Используя метод электронного баланса, составьте уравнение реакции:

H 2 S + HMnO 4 → S + MnO 2 + …

Определите окислитель и восстановитель.

3H 2 S + 2HMnO 4 → 3S + 2MnO 2 + 4H 2 O

Задание №7

Используя метод электронного баланса, составьте уравнение реакции:

H 2 S + HClO 3 → S + HCl + …

Определите окислитель и восстановитель.

S -2 -2e → S 0 │3 реакция окисления

Mn +7 (HMnO 4) – окислитель, S -2 (H 2 S) – восстановитель

3H 2 S + HClO 3 → 3S + HCl + 3H 2 O

Задание №8

Используя метод электронного баланса, составьте уравнение реакции:

NO + HClO 4 + … → HNO 3 + HCl

Определите окислитель и восстановитель.

Cl +7 + 8e → Cl -1 │3 реакция восстановления

N +2 -3e → N +5 │8 реакция окисления

Cl +7 (HClO 4) – окислитель, N +2 (NO) – восстановитель

8NO + 3HClO 4 + 4H 2 O → 8HNO 3 + 3HCl

Задание №9

Используя метод электронного баланса, составьте уравнение реакции:

KMnO 4 + H 2 S + H 2 SO 4 → MnSO 4 + S + … + …

Определите окислитель и восстановитель.

S -2 -2e → S 0 │5 реакция окисления

Mn +7 (KMnO 4) – окислитель, S -2 (H 2 S) – восстановитель

2KMnO 4 + 5H 2 S + 3H 2 SO 4 → 2MnSO 4 + 5S + K 2 SO 4 + 8H 2 O

Задание №10

Используя метод электронного баланса, составьте уравнение реакции:

KMnO 4 + KBr + H 2 SO 4 → MnSO 4 + Br 2 + … + …

Определите окислитель и восстановитель.

Mn +7 + 5e → Mn +2 │2 реакция восстановления

2Br -1 -2e → Br 2 0 │5 реакция окисления

Mn +7 (KMnO 4) – окислитель, Br -1 (KBr) – восстановитель

2KMnO 4 + 10KBr + 8H 2 SO 4 → 2MnSO 4 + 5Br 2 + 6K 2 SO 4 + 8H 2 O

Задание №11

Используя метод электронного баланса, составьте уравнение реакции:

PH 3 + HClO 3 → HCl + …

Определите окислитель и восстановитель.

Cl +5 + 6e → Cl -1 │4 реакция восстановления

Cl +5 (HClO 3) – окислитель, P -3 (H 3 PO 4) – восстановитель

3PH 3 + 4HClO 3 → 4HCl + 3H 3 PO 4

Задание №12

Используя метод электронного баланса, составьте уравнение реакции:

PH 3 + HMnO 4 → MnO 2 + … + …

Определите окислитель и восстановитель.

Mn +7 + 3e → Mn +4 │8 реакция восстановления

P -3 − 8e → P +5 │3 реакция окисления

Mn +7 (HMnO 4) – окислитель, P -3 (H 3 PO 4) – восстановитель

3PH 3 + 8HMnO 4 → 8MnO 2 + 3H 3 PO 4 + 4H 2 O

Задание №13

Используя метод электронного баланса, составьте уравнение реакции:

NO + KClO + … → KNO 3 + KCl + …

Определите окислитель и восстановитель.

Cl +1 + 2e → Cl -1 │3 реакция восстановления

N +2 − 3e → N +5 │2 реакция окисления

Cl +1 (KClO) – окислитель, N +2 (NO) – восстановитель

2NO + 3KClO + 2KOH → 2KNO 3 + 3KCl + H 2 O

Задание №14

Используя метод электронного баланса, составьте уравнение реакции:

PH 3 + AgNO 3 + … → Ag + … + HNO 3

Определите окислитель и восстановитель.

Ag +1 + 1e → Ag 0 │8 реакция восстановления

P -3 - 8e → P +5 │1 реакция окисления

Ag +1 (AgNO 3) – окислитель, P -3 (PH 3) – восстановитель

PH 3 + 8AgNO 3 + 4H 2 O → 8Ag + H 3 PO 4 + 8HNO 3

Задание №15

Используя метод электронного баланса, составьте уравнение реакции:

KNO 2 + … + H 2 SO 4 → I 2 + NO + … + …

Определите окислитель и восстановитель.

N +3 + 1e → N +2 │ 2 реакция восстановления

2I -1 − 2e → I 2 0 │ 1 реакция окисления

N +3 (KNO 2) – окислитель, I -1 (HI) – восстановитель

2KNO 2 + 2HI + H 2 SO 4 → I 2 + 2NO + K 2 SO 4 + 2H 2 O

Задание №16

Используя метод электронного баланса, составьте уравнение реакции:

Na 2 SO 3 + Cl 2 + … → Na 2 SO 4 + …

Определите окислитель и восстановитель.

Cl 2 0 + 2e → 2Cl -1 │1 реакция восстановления

Cl 2 0 – окислитель, S +4 (Na 2 SO 3) – восстановитель

Na 2 SO 3 + Cl 2 + H 2 O → Na 2 SO 4 + 2HCl

Задание №17

Используя метод электронного баланса, составьте уравнение реакции:

KMnO 4 + MnSO 4 + H 2 O→ MnO 2 + … + …

Определите окислитель и восстановитель.

Mn +7 + 3e → Mn +4 │2 реакция восстановления

Mn +2 − 2e → Mn +4 │3 реакция окисления

Mn +7 (KMnO 4) – окислитель, Mn +2 (MnSO 4) – восстановитель

2KMnO 4 + 3MnSO 4 + 2H 2 O → 5MnO 2 + K 2 SO 4 + 2H 2 SO 4

Задание №18

Используя метод электронного баланса, составьте уравнение реакции:

KNO 2 + … + H 2 O → MnO 2 + … + KOH

Определите окислитель и восстановитель.

Mn +7 + 3e → Mn +4 │2 реакция восстановления

N +3 − 2e → N +5 │3 реакция окисления

Mn +7 (KMnO 4) – окислитель, N +3 (KNO 2) – восстановитель

3KNO 2 + 2KMnO 4 + H 2 O → 2MnO 2 + 3KNO 3 + 2KOH

Задание №19

Используя метод электронного баланса, составьте уравнение реакции:

Cr 2 O 3 + … + KOH → KNO 2 +K 2 CrO 4 + …

Определите окислитель и восстановитель.

N +5 + 2e → N +3 │3 реакция восстановления

2Cr +3 − 6e → 2Cr +6 │1 реакция окисления

N +5 (KNO 3) – окислитель, Cr +3 (Cr 2 O 3) – восстановитель

Cr 2 O 3 + 3KNO 3 + 4KOH → 3KNO 2 +2K 2 CrO 4 + 2H 2 O

Задание №20

Используя метод электронного баланса, составьте уравнение реакции:

I 2 + K 2 SO 3 + … → K 2 SO 4 +… + H 2 O

Определите окислитель и восстановитель.

I 2 0 + 2e → 2I -1 │1 реакция восстановления

S +4 - 2e → S +6 │1 реакция окисления

I 2 – окислитель, S +4 (K 2 SO 3) – восстановитель

I 2 + K 2 SO 3 +2KOH → K 2 SO 4 +2KI + H 2 O

Задание №21

Используя метод электронного баланса, составьте уравнение реакции:

KMnO 4 + NH 3 → MnO 2 +N 2 + … + …

Определите окислитель и восстановитель.

Mn +7 + 3e → Mn +4 │2 реакция восстановления

2N -3 − 6e → N 2 0 │1 реакция окисления

Mn +7 (KMnO 4) – окислитель, N -3 (NH 3) – восстановитель

2KMnO 4 + 2NH 3 → 2MnO 2 +N 2 + 2KOH + 2H 2 O

Задание №22

Используя метод электронного баланса, составьте уравнение реакции:

NO 2 + P 2 O 3 + … → NO + K 2 HPO 4 + …

Определите окислитель и восстановитель.

N +4 + 2e → N +2 │2 реакция восстановления

2P +3 - 4e → 2P +5 │1 реакция окисления

N +4 (NO 2) – окислитель, P +3 (P 2 O 3) – восстановитель

2NO 2 + P 2 O 3 + 4KOH → 2NO + 2K 2 HPO 4 + H 2 O

Задание №23

Используя метод электронного баланса, составьте уравнение реакции:

KI + H 2 SO 4 → I 2 + H 2 S + … + …

Определите окислитель и восстановитель.

S +6 + 8e → S -2 │1 реакция восстановления

2I -1 − 2e → I 2 0 │4 реакция окисления

S +6 (H 2 SO 4) – окислитель, I -1 (KI) – восстановитель

8KI + 5H 2 SO 4 → 4I 2 + H 2 S + 4K 2 SO 4 + 4H 2 O

Задание №24

Используя метод электронного баланса, составьте уравнение реакции:

FeSO 4 + … + H 2 SO 4 → … + MnSO 4 + K 2 SO 4 + H 2 O

Определите окислитель и восстановитель.

Mn +7 + 5e → Mn +2 │2 реакция восстановления

2Fe +2 − 2e → 2Fe +3 │5 реакция окисления

Mn +7 (KMnO 4) – окислитель, Fe +2 (FeSO 4) – восстановитель

10FeSO 4 + 2KMnO 4 + 8H 2 SO 4 → 5Fe 2 (SO 4) 3 + 2MnSO 4 + K 2 SO 4 + 8H 2 O

Задание №25

Используя метод электронного баланса, составьте уравнение реакции:

Na 2 SO 3 + … + KOH → K 2 MnO 4 + … + H 2 O

Определите окислитель и восстановитель.

Mn +7 + 1e → Mn +6 │2 реакция восстановления

S +4 − 2e → S +6 │1 реакция окисления

Mn +7 (KMnO 4) – окислитель, S +4 (Na 2 SO 3) – восстановитель

Na 2 SO 3 + 2KMnO 4 + 2KOH → 2K 2 MnO 4 + Na 2 SO 4 + H 2 O

Задание №26

Используя метод электронного баланса, составьте уравнение реакции:

H 2 O 2 + … + H 2 SO 4 → O 2 + MnSO 4 + … + …

Определите окислитель и восстановитель.

Mn +7 + 5e → Mn +2 │2 реакция восстановления

2O -1 − 2e → O 2 0 │5 реакция окисления

Mn +7 (KMnO 4) – окислитель, O -1 (H 2 O 2) – восстановитель

5H 2 O 2 + 2KMnO 4 + 3H 2 SO 4 → 5O 2 + 2MnSO 4 + K 2 SO 4 + 8H 2 O

Задание №27

Используя метод электронного баланса, составьте уравнение реакции:

K 2 Cr 2 O 7 + H 2 S + H 2 SO 4 → Cr 2 (SO 4) 3 + K 2 SO 4 + … + …

Определите окислитель и восстановитель.

2Cr +6 + 6e → 2Cr +3 │1 реакция восстановления

S -2 − 2e → S 0 │3 реакция окисления

Cr +6 (K 2 Cr 2 O 7) – окислитель, S -2 (H 2 S) – восстановитель

K 2 Cr 2 O 7 + 3H 2 S + 4H 2 SO 4 → Cr 2 (SO 4) 3 + K 2 SO 4 + 3S + 7H 2 O

Задание №28

Используя метод электронного баланса, составьте уравнение реакции:

KMnO 4 + HCl → MnCl 2 + Cl 2 + … + …

Определите окислитель и восстановитель.

Mn +7 + 5e → Mn +2 │2 реакция восстановления

2Cl -1 − 2e → Cl 2 0 │5 реакция окисления

Mn +7 (KMnO 4) – окислитель, Cl -1 (HCl) – восстановитель

2KMnO 4 + 16HCl → 2MnCl 2 + 5Cl 2 + 2KCl + 8H 2 O

Задание №29

Используя метод электронного баланса, составьте уравнение реакции:

CrCl 2 + K 2 Cr 2 O 7 + … → CrCl 3 + … + H 2 O

Определите окислитель и восстановитель.

2Cr +6 + 6e → 2Cr +3 │1 реакция восстановления

Cr +2 − 1e → Cr +3 │6 реакция окисления

Cr +6 (K 2 Cr 2 O 7) – окислитель, Cr +2 (CrCl 2) – восстановитель

6CrCl 2 + K 2 Cr 2 O 7 + 14HCl → 8CrCl 3 + 2KCl + 7H 2 O

Задание №30

Используя метод электронного баланса, составьте уравнение реакции:

K 2 CrO 4 + HCl → CrCl 3 + … + … + H 2 O

Определите окислитель и восстановитель.

Cr +6 + 3e → Cr +3 │2 реакция восстановления

2Cl -1 − 2e → Cl 2 0 │3 реакция окисления

Cr +6 (K 2 CrO 4) – окислитель, Cl -1 (HCl) – восстановитель

2K 2 CrO 4 + 16HCl → 2CrCl 3 + 3Cl 2 + 4KCl + 8H 2 O

Задание №31

Используя метод электронного баланса, составьте уравнение реакции:

KI + … + H 2 SO 4 → I 2 + MnSO 4 + … + H 2 O

Определите окислитель и восстановитель.

Mn +7 + 5e → Mn +2 │2 реакция восстановления

2l -1 − 2e → l 2 0 │5 реакция окисления

Mn +7 (KMnO 4) – окислитель, l -1 (Kl) – восстановитель

10KI + 2KMnO 4 + 8H 2 SO 4 → 5I 2 + 2MnSO 4 + 6K 2 SO 4 + 8H 2 O

Задание №32

Используя метод электронного баланса, составьте уравнение реакции:

FeSO 4 + KClO 3 + KOH → K 2 FeO 4 + KCl + K 2 SO 4 + H 2 O

Определите окислитель и восстановитель.

Cl +5 + 6e → Cl -1 │2 реакция восстановления

Fe +2 − 4e → Fe +6 │3 реакция окисления

3FeSO 4 + 2KClO 3 + 12KOH → 3K 2 FeO 4 + 2KCl + 3K 2 SO 4 + 6H 2 O

Задание №33

Используя метод электронного баланса, составьте уравнение реакции:

FeSO 4 + KClO 3 + … → Fe 2 (SO 4) 3 + … + H 2 O

Определите окислитель и восстановитель.

Cl +5 + 6e → Cl -1 │1 реакция восстановления

2Fe +2 − 2e → 2Fe +3 │3 реакция окисления

Cl +5 (KClO 3) – окислитель, Fe +2 (FeSO 4) – восстановитель

6FeSO 4 + KClO 3 + 3H 2 SO 4 → 3Fe 2 (SO 4) 3 + KCl + 3H 2 O

Задание №34

Используя метод электронного баланса, составьте уравнение реакции.

18. Окислительно-восстановительные реакции (продолжение 1)


18.5. ОВР пероксида водорода

В молекулах пероксида водорода H 2 O 2 атомы кислорода находятся в степени окисления –I. Это промежуточная и не самая устойчивая степень окисления атомов этого элемента, поэтому пероксид водорода проявляет и окислительные, и восстановительные свойства.

Окислительно-восстановительная активность этого вещества зависит от концентрации. В обычно используемых растворах с массовой долей 20 % пероксид водорода довольно сильный окислитель, в разбавленных растворах его окислительная активность снижается. Восстановительные свойства для пероксида водорода менее характерны, чем окислительные, и также зависят от концентрации.

Пероксид водорода – очень слабая кислота (см. приложение 13), поэтому в сильнощелочных растворах его молекулы превращаются гидропероксид-ионы.

В зависимости от реакции среды и от того, окислителем или восстановителем является пероксид водорода в данной реакции, продукты окислительно-восстановительного взаимодействия будут разными. Уравнения полуреакций для всех этих случаев приведены в таблице 1.

Таблица 1

Уравнения окислительно-восстановительных полуреакций H 2 O 2 в растворах

Реакция среды

H 2 O 2 окислитель

H 2 O 2 восстановитель

Кислотная
Нейтральная H 2 O 2 + 2e – = 2OH H 2 O 2 + 2H 2 O – 2e – = O 2 + 2H 3 O
Щелочная HO 2 + H 2 O + 2e – = 3OH

Рассмотрим примеры ОВР с участием пероксида водорода.

Пример 1. Составьте уравнение реакции, протекающей при добавлении раствора йодида калия к раствору пероксида водорода, подкисленному серной кислотой.

1 H 2 O 2 + 2H 3 O + 2e – = 4H 2 O
1 2I – 2e – = I 2

H 2 O 2 + 2H 3 O +2I = 4H 2 O + I 2
H 2 O 2 + H 2 SO 4 + 2KI = 2H 2 O + I 2 + K 2 SO 4

Пример 2. Составьте уравнение реакции между перманганатом калия и пероксидом водорода в водном растворе, подкисленном серной кислотой.

2 MnO 4 + 8H 3 O + 5e – = Mn 2 + 12H 2 O
5 H 2 O 2 + 2H 2 O – 2e – = O 2 + 2H 3 O

2MnO 4 + 6H 3 O+ + 5H 2 O 2 = 2Mn 2 + 14H 2 O + 5O 2
2KMnO 4 + 3H 2 SO 4 + 5H 2 O 2 = 2MnSO 4 + 8H 2 O + 5O 2 + K 2 SO 4

Пример 3. Составьте уравнение реакции пероксида водорода с йодидом натрия в растворе в присутствии гидроксида натрия.

3 6 HO 2 + H 2 O + 2e – = 3OH
1 2 I + 6OH – 6e – = IO 3 + 3H 2 O

3HO 2 + I = 3OH + IO 3
3NaHO 2 + NaI = 3NaOH + NaIO 3

Без учета реакции нейтрализации между гидроксидом натрия и пероксидом водорода это уравнение часто записывают так:

3H 2 O 2 + NaI = 3H 2 O + NaIO 3 (в присутствии NaOH)

Это же уравнение получится, если сразу (на стадии составления баланса) не принимать во внимание образование гидропероксид-ионов.

Пример 4. Составьте уравнение реакции, протекающей при добавлении диоксида свинца к раствору пероксида водорода в присутствии гидроксида калия.

Диоксид свинца PbO 2 – очень сильный окислитель, особенно в кислотной среде. Восстанавливаясь в этих условиях, он образует ионы Pb 2 . В щелочной среде при восстановлении PbO 2 образуются ионы .

1 PbO 2 + 2H 2 O + 2e – = + OH
1 HO 2 + OH – 2e – = O 2 + H 2 O

PbO 2 + H 2 O + HO 2 = + O 2

Без учета образования гидропероксид-ионов уравнение записывается так:

PbO 2 + H 2 O 2 + OH = + O 2 + 2H 2 O

Если по условию задания добавляемый раствор пероксида водорода был щелочным, то молекулярное уравнение следует записывать так:

PbO 2 + H 2 O + KHO 2 = K + O 2

Если же в реакционную смесь, содержащую щелочь, добавляется нейтральный раствор пероксида водорода, то молекулярное уравнение может быть записано и без учета образования гидропероксида калия:

PbO 2 + KOH + H 2 O 2 = K + O 2

18.6. ОВР дисмутации и внутримолекулярные ОВР

Среди окислительно-восстановительных реакций выделяют реакции дисмутации (диспропорционирования, самоокисления-самовосстановления) .

Примером известной вам реакции дисмутации является реакция хлора с водой:

Cl 2 + H 2 O HCl + HClO

В этой реакции половина атомов хлора(0) окисляется до степени окисления +I, а вторая половина восстанавливается до степени окисления –I:

Составим методом электронно-ионного баланса уравнение аналогичной реакции, протекающей при пропускании хлора через холодный раствор щелочи, например KOH:

1 Cl 2 + 2e – = 2Cl
1 Cl 2 + 4OH – 2e – = 2ClO + 2H 2 O

2Cl 2 + 4OH = 2Cl + 2ClO + 2H 2 O

Все коэффициенты в этом уравнении имеют общий делитель, следовательно:

Cl 2 + 2OH = Cl + ClO + H 2 O
Cl 2 + 2KOH = KCl + KClO + H 2 O

Дисмутация хлора в горячем растворе протекает несколько иначе:

5 Cl 2 + 2e – = 2Cl
1 Cl 2 + 12OH – 10e – = 2ClO 3 + 6H 2 O

3Cl 2 + 6OH = 5Cl + ClO 3 + 3H 2 O
3Cl 2 + 6KOH = 5KCl + KClO 3 + 3H 2 O

Большое практическое значение имеет дисмутация диоксида азота при его реакции c водой (а ) и с растворами щелочей (б ):

а ) NO 2 + 3H 2 O – e – = NO 3 + 2H 3 O NO 2 + 2OH – e – = NO 3 + H 2 O
NO 2 + H 2 O + e – = HNO 2 + OH NO 2 + e – = NO 2

2NO 2 + 2H 2 O = NO 3 + H 3 O + HNO 2

2NO 2 + 2OH = NO 3 + NO 2 + H 2 O

2NO 2 + H 2 O = HNO 3 + HNO 2

2NO 2 + 2NaOH = NaNO 3 + NaNO 2 + H 2 O

Реакции дисмутации протекают не только в растворах, но и при нагревании твердых веществ, например, хлората калия:

4KClO 3 = KCl + 3KClO 4

Характерным и очень эффектным примером внутримолекулярной ОВР является реакция термического разложения дихромата аммония (NH 4) 2 Cr 2 O 7 . В этом веществе атомы азота находятся в своей низшей степени окисления (–III), а атомы хрома – в высшей (+VI). При комнатной температуре это соединение вполне устойчиво, но при нагревании интенсивно разлагается. При этом хром(VI) переходит в хром(III) – наиболее устойчивое состояние хрома, а азот(–III) – в азот(0) – также наиболее устойчивое состояние. С учетом числа атомов в формульной единице уравнения электронного баланса:

2Cr +VI + 6e – = 2Cr +III
2N –III – 6e – = N 2 ,

а само уравнение реакции:

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 + 4H 2 O .

Другой важный пример внутримолекулярной ОВР – термическое разложение перхлората калия KClO 4 . В этой реакции хлор(VII), как и всегда, когда он выступает в роли окислителя, переходит в хлор(–I), окисляя кислород(–II) до простого вещества:

1 Cl +VII + 8e – = Cl –I
2 2O –II – 4e – = O 2

и, следовательно, уравнение реакции

KClO 4 = KCl + 2O 2

Аналогично разлагается при нагревании и хлорат калия KClO 3 , если разложение проводить в присутствии катализатора (MnO 2): 2KClO 3 = 2KCl + 3O 2

В отсутствие катализатора протекает реакция дисмутации.
К группе внутримолекулярных ОВР относятся и реакции термического разложения нитратов.
Обычно процессы, протекающие при нагревании нитратов довольно сложны, особенно в случае кристаллогидратов. Если в кристаллогидрате молекулы воды удерживаются слабо, то при слабом нагревании происходит обезвоживание нитрата [например, LiNO 3 . 3H 2 O и Ca(NO 3) 2 4H 2 O обезвоживаются до LiNO 3 и Ca(NO 3) 2 ], если же вода связана прочнее [как, например, в Mg(NO 3) 2 . 6H 2 O и Bi(NO 3) 3 . 5H 2 O], то происходят своего рода реакции " внутримолекулярного гидролиза" с образованием основных солей – гидроксид-нитратов , которые при дальнейшем нагревании могут переходить в оксид-нитраты { и (NO 3) 6 }, последние при более высокой температуре разлагаются до оксидов.

Безводные нитраты при нагревании могут разлагаться до нитритов (если они существуют и при этой температуре еще устойчивы), а нитриты – до оксидов. Если нагревание проводится до достаточно высокой температуры, или соответствующий оксид малоустойчив (Ag 2 O, HgO), то продуктом термического разложения может быть и металл (Cu, Cd, Ag, Hg).

Несколько упрощенная схема термического разложения нитратов показана на рис. 5.

Примеры последовательных превращений, протекающих при нагревании некоторых нитратов (температуры приведены в градусах Цельсия):

KNO 3 KNO 2 K 2 O;

Ca(NO 3) 2 . 4H 2 O Ca(NO 3) 2 Ca(NO 2) 2 CaO;

Mg(NO 3) 2 . 6H 2 O Mg(NO 3)(OH) MgO;

Cu(NO 3) 2 . 6H 2 O Cu(NO 3) 2 CuO Cu 2 O Cu;

Bi(NO 3) 3 . 5H 2 O Bi(NO 3) 2 (OH) Bi(NO 3)(OH) 2 (NO 3) 6 Bi 2 O 3 .

Несмотря на сложность происходящих процессов, при ответе на вопрос, что получится при " прокаливании" (то есть при температуре 400 – 500 o С) соответствующего безводного нитрата, обычно руководствуются следующими предельно упрощенными правилами:

1) нитраты наиболее активных металлов (в ряду напряжений – левее магния) разлагаются до нитритов;
2) нитраты менее активных металлов (в ряду напряжений – от магния до меди) разлагаются до оксидов;
3) нитраты наименее активных металлов (в ряду напряжений – правее меди) разлагаются до металла.

Используя эти правила, следует помнить, что в таких условиях
LiNO 3 разлагается до оксида,
Be(NO 3) 2 разлагается до оксида при более высокой температуре,
из Ni(NO 3) 2 помимо NiO может получиться и Ni(NO 2) 2 ,
Mn(NO 3) 2 разлагается до Mn 2 O 3 ,
Fe(NO 3) 2 разлагается до Fe 2 O 3 ;
из Hg(NO 3) 2 кроме ртути может получиться и ее оксид.

Рассмотрим типичные примеры реакций, относящихся к этим трем типам:

KNO 3 KNO 2 + O 2

2 N +V +2e– = N +III
1 2O– II – 4e– = O 2

2KNO 3 = 2KNO 2 + O 2

Zn(NO 3) 2 ZnO + NO 2 + O 2

N +V + e– = N +IV
2O– II – 4e– = O 2

2Zn(NO 3) 2 = 2ZnO + 4NO 2 + O 2

AgNO 3 Ag + NO 2 + O 2

18.7. Окислительно-восстановительные реакции конмутации

Эти реакции могут быть как межмолекулярными, так и внутримолекулярными. Например, внутримолекулярные ОВР, протекающие при термическом разложении нитрата и нитрита аммония, относятся к реакциям конмутации, так как здесь происходит выравнивание степени окисления атомов азота:

NH 4 NO 3 = N 2 O + 2H 2 O (около 200 o С)
NH 4 NO 2 = N 2 + 2H 2 O (60 – 70 o С)

При более высокой температуре (250 – 300 o С) нитрат аммония разлагается до N 2 и NO, а при еще более высокой (выше 300 o С) – до азота и кислорода, и в том и в другом случае образуется вода.

Примером межмолекулярной реакции конмутации является реакция, протекающая при сливании горячих растворов нитрита калия и хлорида аммония:

NH 4 + NO 2 = N 2 + 2H 2 O

NH 4 Cl + KNO 2 = KCl + N 2 + 2H 2 O

Если проводить аналогичную реакцию, нагревая смесь кристаллических сульфата аммония и нитрата кальция, то, в зависимости от условий, реакция может протекать по-разному:

(NH 4) 2 SO 4 + Ca(NO 3) 2 = 2N 2 O + 4H 2 O + CaSO 4 (t < 250 o C)
(NH 4) 2 SO 4 + Ca(NO 3) 2 = 2N 2 + O 2 + 4H 2 O + CaSO 4 (t > 250 o С)
7(NH 4) 2 SO 4 + 3Ca(NO 3) 2 = 8N 2 + 18H 2 O + 3CaSO 4 + 4NH 4 HSO 4 (t > 250 o С)

Первая и третья из этих реакций – реакции конмутации, вторая – более сложная реакция, включающая как конмутацию атомов азота, так и окисление атомов кислорода. Какая из реакций будет протекать при температуре выше 250 o С, зависит от соотношения реагентов.

Реакции конмутации, приводящие к образованию хлора, протекают при обработке соляной кислотой солей кислородсодержащих кислот хлора, например:

6HCl + KClO 3 = KCl + 3Cl 2 + 3H 2 O

Также по реакции конмутации образуется сера из газообразных сероводорода и диоксида серы:

2H 2 S + SO 2 = 3S + 2H 2 O

ОВР конмутации довольно многочисленны и разнообразны – к ним относятся даже некоторые кислотно-основные реакции, например:

NaH + H 2 O = NaOH + H 2 .

Для составления уравнений ОВР конмутации используется как электронно-ионный, так и электронный баланс, в зависимости от того, в растворе протекает данная реакция или нет.

18.8. Электролиз

Изучая главу IX, вы познакомились с электролизом расплавов различных веществ. Так как подвижные ионы присутствуют и в растворах, электролизу могут быть подвергнуты также растворы различных электролитов.

Как при электролизе расплавов, так и при электролизе растворов, обычно используют электроды, изготовленные из материала, не вступающего в реакцию (графита, платины и т. п.), но иногда электролиз проводят и с " растворимым" анодом. " Растворимый" анод используют в тех случаях, когда необходимо получить электрохимическим способом соединение элемента, из которого изготовлен анод. При электролизе имеет большое значение разделены анодное и катодное пространство, или электролит в процессе реакции перемешивается – продукты реакции в этих случаях могут оказаться разными.

Рассмотрим важнейшие случаи электролиза.

1. Электролиз расплава NaCl. Электроды инертные (графитовые), анодное и катодное пространства разделены. Как вы уже знаете, в этом случае на катоде и на аноде протекают реакции:

K: Na + e – = Na
A: 2Cl – 2e – = Cl 2

Записав таким образом уравнения реакций, протекающих на электродах, мы получаем полуреакции, с которыми можем поступать точно так же, как в случае использования метода электронно-ионного баланса:

2 Na + e – = Na
1 2Cl – 2e – = Cl 2

Сложив эти уравнения полуреакций, получаем ионное уравнение электролиза

2Na + 2Cl 2Na + Cl 2­

а затем и молекулярное

2NaCl 2Na + Cl 2­

В этом случае катодное и анодное пространства должны быть разделены для того, чтобы продукты реакции не реагировали между собой. В промышленности эта реакция используется для получения металлического натрия.

2. Электролиз расплава K 2 CO 3 . Электроды инертные (платиновые). Катодное и анодное пространства разделены.

4 K + e – = K
1 2CO 3 2 – 4e – = 2CO 2 + O 2

4K+ + 2CO 3 2 4K + 2CO 2 + O 2
2K 2 CO 3 4K + 2CO 2 + O 2

3. Электролиз воды (H 2 O). Электроды инертные.

2 2H 3 O + 2e – = H 2 + 2H 2 O
1 4OH – 4e – = O 2 + 2H 2 O

4H 3 O + 4OH 2H 2 + O 2 + 6H 2 O

2H 2 O 2H 2 + O 2

Вода – очень слабый электролит, в ней содержится очень мало ионов, поэтому электролиз чистой воды протекает крайне медленно.

4. Электролиз раствора CuCl 2 . Электроды графитовые. В системе присутствуют катионы Cu 2 и H 3 O , а также анионы Cl и OH . Ионы Cu 2 более сильные окислители, чем ионы H 3 O (см. ряд напряжений), поэтому на катоде прежде всего будут разряжаться ионы меди, и только, когда их останется очень мало, будут разряжаться ионы оксония. Для анионов можно руководствоваться следующим правилом: