Стереометрия. Перпендикулярность прямых в пространстве

Тема урока: «Признак перпендикулярности двух плоскостей»

Тип урока: Урок изучения нового материала

Формируемые результаты:

Предметные: ввести понятие угла между плоскостями, познакомить учащихся с определением перпендикулярных плоскостей, признаком перпендикулярности двух плоскостей, формировать умение применять его при решении задач.

Личностные: развивать познавательный интерес к геометрии, формировать умение представлять результат своей деятельности.

Метапредметные: формировать умение ставить и формулировать для себя новые задачи в учебе и познавательной деятельности.

Планируемые результаты: учащийся научится применять новую теорему при решении несложных задач.

Оборудование: доска, готовые рисунки (слайд-фильм), модели, изготовленные учащимися и учителем, текст задачи на печатной основе.

Cлова Пойа Д.:

Подробнее во вложении

Скачать:


Предварительный просмотр:

Урок геометрии в 10 классе.

Тема урока: «Признак перпендикулярности двух плоскостей»

Тип урока: Урок изучения нового материала

Формируемые результаты:

Предметные: ввести понятие угла между плоскостями, познакомить учащихся с определением перпендикулярных плоскостей, признаком перпендикулярности двух плоскостей, формировать умение применять его при решении задач.

Личностные: развивать познавательный интерес к геометрии, формировать умение представлять результат своей деятельности.

Метапредметные: формировать умение ставить и формулировать для себя новые задачи в учебе и познавательной деятельности.

Планируемые результаты: учащийся научится применять новую теорему при решении несложных задач.

Оборудование: доска, готовые рисунки (слайд-фильм), модели, изготовленные учащимися и учителем, текст задачи на печатной основе.

Cлова Пойа Д.: «Нужно всеми средствами обучать искусству доказывать, не забывая при этом и об искусстве догадываться».

1. Оргмомент.

2. Проверка домашнего задания.

1)Ученик с моделью двугранного угла рассказывает, как образуется его линейный угол; дает определение градусной меры двугранного угла.

2) Задача №1. (Слайд 2) – по рисунку.

3) Задача №2. (Слайд 3) – по рисунку.

К этим задачам вернемся позже перед доказательством признака.

3. Актуализация знаний.

1) Рассказ ученика о пересекающихся плоскостях (используется модель).

2) Определение перпендикулярных плоскостей (использует модель), примеры.

Вернемся к домашним задачам. Было установлено, что в обоих случаях двугранные углы равны 90°, т.е. являются прямыми. Посмотрим, какие символы нужно вставить вместо точек и сделаем вывод о взаимном расположении плоскостей (слайд 4).

(AFC) FO (ADC)

(AFC) (ADC).

Выясним, можно ли без нахождения двугранного угла сделать вывод о перпендикулярности плоскостей?

Обратите внимание на связь (слайд 5):

(DCC₁) DD₁ (ABC) (DCC₁) (ABC) и

(AFC) FO (ADC) (AFC) (ADC)

Формулирование предположения учащимися.

4. Изучение нового материала.

1). Сообщение темы урока: «Признак перпендикулярности двух плоскостей».

2). Формулировка теоремы (учебник): «Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны» ; показ на модели.

3). Доказательство проводится по заранее заготовленному чертежу (рис.62).

Дано: α, β – плоскости; α АВ β; АВ ∩ β = А

Доказать: α β.

Доказательство: 1) α ∩ β = АС

2) АВ АС (?)

3) Построим АD β; АD АС

4) L BAD - ……….. , L BAD = …. ° (?)

5) L (α, β) = 90°, т.е. α β.

5. Первичное закрепление (ПЗ).

1). Решение задачи 1 на готовом чертеже (слайд 6).

Дано: DА

Доказать: (DАС)

2). Решение задачи 2 на готовом чертеже + у каждого заготовленный вырезанный ромб (слайд 7).

Дано: АВСД – ромб;

Перегибаем по диагонали:

ВО

Докажи: (АВС)

3). Задача 3. «Слепой» текст на печатной основе (слайды 8-9).

Дано: рисунок; двугранный угол ВАСД – прямой.

Найди: ВД

Самостоятельно. Проверка.

6. Итоги урока. Информация о домашнем задании.

Данный урок поможет желающим получить представление о теме «Признак перпендикулярности двух плоскостей». В начале него мы повторим определение двугранного и линейного угла. Затем рассмотрим, какие плоскости называются перпендикулярными, и докажем признак перпендикулярности двух плоскостей.

Тема: Перпендикулярность прямых и плоскостей

Урок: Признак перпендикулярности двух плоскостей

Определение. Двугранным углом называется фигура, образованная двумя полуплоскостями, не принадлежащими одной плоскости, и их общей прямой а (а - ребро).

Рис. 1

Рассмотрим две полуплоскости α и β (рис. 1). Их общая граница - l. Указанная фигура называется двугранным углом. Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром.

Двугранный угол измеряется своим линейным углом. На общем ребре l двугранного угла выберем произвольную точку. В полуплоскостях α и β из этой точки проведем перпендикуляры a и b к прямой l и получим линейный угол двугранного угла.

Прямые a и b образуют четыре угла, равных φ, 180° - φ, φ, 180° - φ. Напомним, углом между прямыми называется наименьший из этих углов.

Определение. Углом между плоскостями называется наименьший из двугранных углов, образованных этими плоскостями. φ - угол между плоскостями α и β, если

Определение. Две пересекающиеся плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90°.

Рис. 2

На ребре l выбрана произвольная точка М (рис. 2). Проведем две перпендикулярные прямые МА = а и МВ = b к ребру l в плоскости α и в плоскости β соответственно. Получили угол АМВ. Угол АМВ - это линейный угол двугранного угла. Если угол АМВ равен 90°, то плоскости α и β называются перпендикулярными.

Прямая b перпендикулярна прямой l по построению. Прямая b перпендикулярна прямой а, так как угол между плоскостями α и β равен 90°. Получаем, что прямая b перпендикулярна двум пересекающимся прямым а и l из плоскости α. Значит, прямая b перпендикулярна плоскости α.

Аналогично можно доказать, что прямая а перпендикулярна плоскости β. Прямая а перпендикулярна прямой l по построению. Прямая а перпендикулярна прямой b, так как угол между плоскостями α и β равен 90°. Получаем, что прямая а перпендикулярна двум пересекающимся прямым b и l из плоскости β. Значит, прямая а перпендикулярна плоскости β.

Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.

Доказать:

Рис. 3

Доказательство:

Пусть плоскости α и β пересекаются по прямой АС (рис. 3). Чтобы доказать, что плоскости взаимно перпендикулярны, нужно построить линейный угол между ними и показать, что этот угол равен 90°.

Прямая АВ перпендикулярна по условию плоскости β, а значит, и прямой АС, лежащей в плоскости β.

Проведем прямую АD перпендикулярно прямой АС в плоскости β. Тогда ВАD -линейный угол двугранного угла.

Прямая АВ перпендикулярна плоскости β, а значит, и прямой АD, лежащей в плоскости β. Значит, линейный угол ВАD равен 90°. Значит, плоскости α и β перпендикулярны, что и требовалось доказать.

Плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей (рис. 4).

Доказать:

Рис. 4

Доказательство:

Прямая l перпендикулярна плоскости γ, а плоскость α проходит через прямую l. Значит, по признаку перпендикулярности плоскостей, плоскости α и γ перпендикулярны.

Прямая l перпендикулярна плоскости γ, а плоскость β проходит через прямую l. Значит, по признаку перпендикулярности плоскостей, плоскости β и γ перпендикулярны.

Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то заданные плоскости перпендикулярны () (рис.28)

α – плоскость, в – перпендикулярная ей прямая, β – плоскость, проходящая через прямую в , и с – прямая, по которой пересекаются плоскости α и β.

Следствие. Если плоскость перпендикулярна к линии пересечения двух заданных плоскостей, то она перпендикулярна к каждой из этих плоскостей

Задача 1 . Доказать, что через любую точку прямой в пространстве можно провести две различные перпендикулярные ей прямые.

Доказательство:

По аксиоме I существует точка, не принадлежащая прямой а. По теореме 2.1через точку В и прямую а можно провести плоскость α. (рис.29) По теореме 2.3 через точку А в плоскости α можно провести прямую а. По аксиоме С 1 существует точка С , не принадлежащая α. По теореме 15.1 через точку С и прямую а можно провести плоскость β. В плоскости β по теореме 2.3 через точку а можно провести прямую с а. Прямые в и с по построению имеют только одну общую точку А и обе перпендикулярны


Задача 2. Верхние концы двух вертикально стоящих столбов, удаленных на расстояние3, 4 м, соединены перекладиной. Высота одного столба 5,8 м, а другого – 3,9 м. Найдите длину перекладины.

АС = 5,8м, ВD = 3,9 м, АВ - ? (рис.30)


АЕ = АС – СЕ = АС – ВD = 5,8 – 3,9 = 1,9 (м)

По теореме Пифагора из ∆ АЕВ получаем:

АВ 2 = АЕ 2 + ЕВ 2 = АЕ 2 + СD 2 = (1,9) 2 + (3,4) 2 = 15,17 (м 2)

АВ = = 3,9 (м)

Задачи

Цель . Учиться анализировать в простейших случаях взаимное расположение объектов в пространстве, использовать при решении стереометрических задач планиметрические факты и методы .


1. Докажите, что через любую точку прямой в пространстве можно провести перпендикулярную ей прямую.

2. Прямые АВ, АС и АD попарно перпендикулярны. Найти отрезок СД, если:

1) АВ = 3см, ВС = 7см, АD = 1,5 см;

2) ВД = 9 см, АD = 5cм, ВС = 16см;

3) АВ = в, ВС = а, АD =d;

4) ВD = с, ВС = а, АD = d

3. Точка А находится на расстоянии a от вершин равностороннего треугольника со стороной а. Найдите расстояние от точки А до плоскости треугольника.

4. Докажите, что если прямая параллельна плоскости, то все ее точки находятся на одинаковом расстоянии от плоскости.

5. Телефонная проволока длиной 15 м протянута от телефонного столба, где она прикреплена на высоте 8 м от поверхности земли, к дому, где ее прикрепили на высоте 20 м. Найдите расстояние между домом и столбом, полагая, что проволока не провисает.

6. Из точки к плоскости проведены две наклонные, равные 10 см и 17 см. Разность проекций этих наклонных равна 9 см. Найти проекции наклонных.


7. Из точки к плоскости проведены две наклонные, одна из которых на 26 см больше другой. Проекции наклонных равны 12 см и 40 см. Найдите наклонные.



8. Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если они относятся как 1:2 и проекции наклонных равны 1 см и 7 см.

9. Из точки к плоскости проведены две наклонные, равные 23 см и 33 см. Найдите

расстояние от этой точки до плоскости, если проекции наклонных относятся как 2:3.

10. Найдите расстояние от середины отрезка АВ до плоскости, не пересекающей этот отрезок, если расстояние от точек а и В до плоскости равны: 1) 3, 2 см и 5, 3 см;7, 4 см и 6, 1 см; 3) a и в.

11. Решите предыдущую задачу при условии, что отрезок АВ пересекает плоскость.

12. Отрезок длиной 1 м пересекает плоскость, концы его удалены от плоскости на расстояние 0,5 м и 0, 3 м. Найдите длину проекции отрезка на плоскость..

13. Из точек А и В опущены перпендикуляры на плоскость. Найдите расстояние между точками А и В, если перпендикуляры равны 3 м и 2 м, расстояние между их основаниями равно 2,4 м, а отрезок АВ не пересекает плоскость.

14. Из точек А и В, лежащих в двух перпендикулярных плоскостях, опущены перпендикуляры АС и ВD на прямую пересечения плоскостей. Найдите длину отрезка АВ, если:1) АС = 6 м, ВD = 7 м, СD = 6 м; 2) АС = 3 м, ВD = 4 м, СD = 12 м; 3) АD = 4 м, ВС = 7 м, СD = 1 м; 4) АD = ВС = 5 м, СD = 1 м; 4) АС = а, ВD = в, СD = с; 5) АD = а, ВС = в, СD = с.

15.Из вершин А и В равностороннего треугольника АВС восставлены перпендикуляры АА 1 и ВВ 1 к плоскости треугольника. Найдите расстояние от вершины С до середины отрезка А 1 В 1 , если АВ = 2 м, СА 1 = 3 м, СВ 1 = 7 м и отрезок А 1 В 1 не пересекает плоскость треугольника

16. Из вершин А и В острых углов прямоугольного треугольника АВС восставлены перпендикуляры АА 1 и ВВ 1 к плоскости треугольника. Найдите расстояние от вершины С до середины отрезка А 1 В 1 , если А 1 С = 4 м, АА 1 = 3 м, СВ 1 = 6 м, ВВ 1 = 2 м и отрезок А 1 В 1 не пересекает плоскость треугольника.

Построение двух взаимно перпендикулярных плоскостей. Как известно, плоскости перпендикулярны, если прямая, принадлежащая одной плоскости, перпендикулярна другой плоскости. Поэтому плоскость, перпендикулярную к заданной, можно провести через прямую, перпендикулярную к заданной плоскости, или перпендикулярно прямой, лежащей в заданной плоскости.

Изображенные на рис. 4.12 плоскости (плоскость треугольника АВС и плоскость Р) взаимно перпендикулярны, так как плоскость Р перпендикулярна к прямой А1, лежащей в плоскости треугольника. Проекции плоскости P, проходящей через прямую с проекциями m 2 n 2 , m 1 n 1 и перпендикулярной плоскости, заданной проекциями a 2 b 2 c 2 , a 1 b 1 c 1 треугольника, показано на рис. 4.12.

Построение: 1. Провести главные линии плоскости, С1 - горизонталь, С2 - фронталь.

2. Через произвольную точку Е (расположенную вне треугольника АВС) провести прямую EF перпендикулярно главным линиям плоскости (c 2 f 2 перпендикулярна c 2 2 2 и c 1 f 1 перепендикулярна с 1 1 1).

3. Через точку N провести произвольно прямую ЕМ, пересекающуюся с EF, получим плоскость Р заданную двумя пересекающимися прямыми(ЕМ Х EF).

Таким образом плоскость Р(МЕ Х EF) перепендикулярна плоскости Q(треугольник АВС).

Следует заметить, что у взаимно перпендикулярных плоскостей общего положения их одноименные следы никогда не перпендикулярны. Но если одна из заданных плоскостей (или обе) является плоскостью общего положения, то взаимная перпендикулярность на эпюре одной пары их следов свидетельствует о перпендикулярности плоскостей в пространстве.

18)Прямую линию пересечения двух плоскостей можно определить по двум их общим точкам. Для этого определяют точки пересечения любых двух прямых линий одной плоскости с другой плоскостью или точки пересечения прямой на каждой из плоскостей с другой плоскостью

Последовательность построения:

Линию пересечения двух плоскостей можно найти применяя при решении вспомогательные секущие плоскости. Обычно выбирают проецирующие плоскости (часто горизонтальные или фронтальные)

Выбирают произвольную секущую вспомогательную горизонтальную плоскость Ф1 она пересекает заданные плоскости по прямым линиям (12и34) которые (на п1 пересекаются в точке к)

Вторая секущая горизонтальная плоскость пересекает заданные плоскости так же по горизонталям они в свою очередь пересекаются в точке Е

Прямая КЕ является линией пересечения заданных плоскостей.

Рассмотрим решение этой задачи на плоском чертеже.

1-й этап решения Для построения точки M использована горизонтально проецирующая плоскость - посредник ("), в которую заключена сторона AB треугольника ABC.

2-й этап решения Строим линию пересечения (на чертеже она задана точками 1 и 2) плоскости-посредника (") и плоскости DEK.

3-й этап решения Находим точку M пересечения прямой 1 - 2 с прямой AB.

Найдена одна точка M искомой линии пересечения.

Для построения точки N использована горизонтально проецирующая плоскость  ("), в которую заключена сторона AC треугольника ABC.

Построения аналогичны предыдущим.

Определение видимости на плоскости H выполнено с помощью горизонтально конкурирующих точек 4 и 8

Точка 4 расположена над точкой 8 (4" и 8"), поэтому на плоскости H часть треугольника DEK, расположенная в сторону точки 4, закрывает собой часть треугольника ABC, расположенную от линии пересечения в сторону точки 8. С помощью пары фронтально конкурирующих точек 6 и 7 определена видимость на плоскости V.

Пересечение двух фронтально проецирующих плоскостей (?)

Пересечение двух горизонтально проецурующих плоскостей (?)

19)Разрезом называется изображение предмета, мысленно рассеченного одной или несколькими плоскостями, при этом мысленное рассечение предмета относиться только к данному разрезу и не влечет за собой изменение других изображений того же предмета. На разрезе показывают то, что расположено в секущей плоскости и то, что расположено за ней.

В зависимости от числа секущих плоскостей разрезу подразделяются на:

Простые (при одной секущей плоскости)

Сложные (при нескольких секущих плоскостях)

В зависимости от положения секущей плоскости относительно горизонтальной плоскости проекции разрезы разделяются на:

ГОРИЗОНТАЛЬНЫЕ – секущая плоскость параллельна горизонтальной плоскости проекции

ВЕРТИКАЛЬНЫЕ - секущая плоскость перпендикулярна горизонтальной плоскости проекции

НАКЛОНЫЕ – секущая плоскость некоторый непрямой угол с горизонтальной плоскостью =) ВЕРТИКАЛЬНЫЙ разрез называют фронтальным если секуща плоскость параллельна фронтальной плоскости проекций. И профильным если секущая плоскость параллельна профильной плоскости проекций.

СЛОЖНЫЕ разрезы бывают ПРОДОЛЬНЫМИ, если секущии плоскости направлены вдоль длинны или высоты предмета. И ПОПЕРЕЧНЫМИ ЕСЛИ секущие плоскости направлены ПЕРПЕНДИКУЛЯРНО длинне или высоте предмета.

СТУПЕНЧАТЫМИ – если секущее плоскости параллельны между собой

ЛОМАНЫМИ – если секущие плоскости пересекаются между собой.

МЕСТНЫЕ разрезы служат для выявления внутреннего строения предмета в отдельном ограниченном месте. МЕСТНЫЙ РАЗРЕЗ выделяется на виде сплошной, волнистой, тонкой линией.

Обозначение разрезов – Положение секущей плоскости указывают разомкнутой линией сечения. Начальный и конечный штрихи линии сечения не должны пересекать контур соответствующего изображения. На начальном и конечном штрихе нужно ставить стрелки указывающие направление взгляда Стрелки должны наноситься на расстоянии 2…3 мм от внешнего конца штриха.

ПРИ СЛОЖНОМ РАЗРЕЗЕ штрихи разомкнутой линии сечения проводят так же у перегибов линии сечения.

ОКОЛО стрелок, указывающих направление взгляда, со внешней стороны угла наносят прописные буквы русского алфавита. Буквенные обозначения присваиваются в алфавитном порядке без повторений и без пропусков.

Сам разрез должен быть отмечен надписью по типу А-А

Если секущая плоскость совпадает с плоскостью симметрии предмета, а разрез выполнен на месте соответствующего вида в проекционной связи, то для горизонтальных, фронтальных и профильных разрезов отмечать положение секуще плоскости не нужно и разрез надписью не сопровождается.

Если контурная линия предмета совпадает с осью симметрии то границу между видом и разрезом указывают волнистой линией которую проводят так, чтобы сохранилось изображение ребра.

Напомним, что плоскости называются перпендикулярными, если угол между ними прямой. А угол этот определяется так. Берут точку О на прямой С, по которой пересекаются плоскости , и проводят через нее в плоскостях прямые (рис. 1.9а). Углом между а и b и измеряется угол между . Когда этот угол прямой, то говорят, что плоскости взаимно перпендикулярны и пишут

Вы, конечно, уже заметили, что когда , то из трех прямых а, b, с любые две взаимно перпендикулярны (рис. 2.28). В частности, . Поэтому (по признаку перпендикулярности прямой и плоскости). Аналогично,

Итак, каждая из двух взаимно перпендикулярных плоскостей содержит перпендикуляр к другой плоскости. Более того, эти перпендикуляры заполняют взаимно перпендикулярные плоскости. (рис. 2.29).

Докажем последнее утверждение. Действительно, если через любую точку плоскости а провести прямую

То (по теореме 5 о параллельности перпендикуляров).

А для признака перпендикулярности плоскостей достаточно одного перпендикуляра к плоскости.

Теорема 7. (признак перпендикулярности плоскостей). Если плоскость проходит через перпендикуляр к другой плоскости, то эти плоскости взаимно перпендикулярны.

Пусть плоскость а содержит прямую а, перпендикулярную плоскости Р (рис. 2.28). Тогда прямая а пересекает плоскость Р в точке О. Точка О лежит на прямой С, по которой пересекаются . Проведем в плоскости Р через точку О прямую . Так как и b лежит в плоскости Р, то Следовательно,

Данный признак имеет простой практический смысл: плоскость двери, навешенной на перпендикулярный полу косяк, перпендикулярна плоскости пола при любых положениях двери (рис. 2.1). Другое практическое применение этого признака: когда требуется проверить, вертикально ли установлена плоская поверхность (стена, забор и т. п.), то это делают с помощью отвеса - веревки с грузом. Отвес всегда направлен вертикально, и стена стоит вертикально, если в любом ее месте отвес, располагаясь вдоль нее, не отклоняется.

При решении задач, в которых встречаются перпендикулярные плоскости, часто используются следующие три предложения.

Предложение 1. Прямая, лежащая в одной из двух взаимно перпендикулярных плоскостей и перпендикулярная их общей прямой, перпендикулярна другой плоскости.

Пусть плоскости взаимно перпендикулярны и пересекаются по прямой С. Пусть, далее, прямая а лежит в плоскости а и (рис. 2.28). Прямая а пересекает прямую С в некоторой точке О. Проведем через точку О в плоскости Р прямую b, перпендикулярную прямой с. Так как то . Поскольку , то (по теореме 2).

Второе предложение обратно первому.

Предложение 2. Прямая, имеющая общую точку с одной из двух взаимно перпендикулярных плоскостей и перпендикулярная другой плоскости, лежит в первой из них.

Пусть плоскости взаимно перпендикулярны, прямая а также прямая а имеет с плоскостью а общую точку А (рис. 2.30). Через точку А в плоскости а проведем прямую перпендикулярную прямой С - линии пересечения плоскостей . Согласно предложению Поскольку в пространстве через каждую точку проходит лишь одна прямая, перпендикулярная данной плоскости, то прямые а и совпадают. Так как лежит в плоскости а, то и а лежит в плоскости

Предложение 3. Если две плоскости, перпендикулярные третьей плоскости, пересекаются, то прямая их пересечения перпендикулярна третьей плоскости.

Пусть две плоскости , пересекающиеся по прямой а, перпендикулярны плоскости у (рис. 2.31). Тогда через любую точку прямой а проведем прямую, перпендикулярную плоскости у. Согласно предложению 2, эта прямая лежит и в плоскости а, и в плоскости Р, т. е. совпадает с прямой а. Итак,